Platforms for a Green New Deal

Two new books in review

Also published on Resilience.org

Does the Green New Deal assume a faith in “green growth”? Does the Green New Deal make promises that go far beyond what our societies can afford? Will the Green New Deal saddle ordinary taxpayers with huge tax bills? Can the Green New Deal provide quick solutions to both environmental overshoot and economic inequality?

These questions have been posed by people from across the spectrum – but of course proponents of a Green New Deal may not agree on all of the goals, let alone an implementation plan. So it’s good to see two concise manifestos – one British, one American – released by Verso in November.

The Case for the Green New Deal (by Ann Pettifor), and A Planet to Win: Why We Need a Green New Deal (by Kate Aronoff, Alyssa Battistoni, Daniel Aldana Cohen and Thea Riofrancos) each clock in at a little under 200 pages, and both books are written in accessible prose for a general audience.

Surprisingly, there is remarkably little overlap in coverage and it’s well worth reading both volumes.

The Case for a Green New Deal takes a much deeper dive into monetary policy. A Planet To Win devotes many pages to explaining how a socially just and environmentally wise society can provide a healthy, prosperous, even luxurious lifestyle for all citizens, once we understand that luxury does not consist of ever-more-conspicuous consumption.

The two books wind to their destinations along different paths but they share some very important principles.

Covers of The Case For The Green New Deal and A Planet To Win

First, both books make clear that a Green New Deal must not shirk a head-on confrontation with the power of corporate finance. Both books hark back to Franklin Delano Roosevelt’s famous opposition to big banking interests, and both books fault Barack Obama for letting financial kingpins escape the 2008 crash with enhanced power and wealth while ordinary citizens suffered the consequences.

Instead of seeing the crash as an opportunity to set a dramatically different course for public finance, Obama presented himself as the protector of Wall Street:

“As [Obama] told financial CEOs in early 2009, “My administration is the only thing between you and the pitchforks.” Frankly, he should have put unemployed people to work in a solar-powered pitchfork factory.” (A Planet To Win, page 13)

A second point common to both books is the view that the biggest and most immediate emissions cuts must come from elite classes who account for a disproportionate share of emissions. Unfortunately, neither book makes it clear whether they are talking about the carbon-emitting elite in wealthy countries, or the carbon-emitting elite on a global scale. (If it’s the latter, that likely includes the authors, most of their readership, this writer and most readers of this review.)

Finally, both books take a clear position against the concept of continuous, exponential economic growth. Though they argue that the global economy must cease to grow, and sooner rather than later, their prescriptions also appear to imply that there will be one more dramatic burst of economic growth during the transition to an equitable, sustainable steady-state economy.

Left unasked and unanswered in these books is whether the climate system can stand even one more short burst of global economic growth.

Public or private finance

The British entry into this conversation takes a deeper dive into the economic policies of US President Franklin Roosevelt. British economist Ann Pettifor was at the centre of one of the first policy statements that used the “Green New Deal” moniker, just before the financial crash of 2007–08. She argues that we should have learned the same lessons from that crash that Roosevelt had to learn from the Depression of the 1930s.

Alluding to Roosevelt’s inaugural address, she summarizes her thesis this way:

“We can afford what we can do. This is the theme of the book in your hands. There are limits to what we can do – notably ecological limits, but thanks to the public good that is the monetary system, we can, within human and ecological limits, afford what we can do.” (The Case for the Green New Deal, page xi)

That comes across as a radical idea in this day of austerity budgetting. But Pettifor says the limits that count are the limits of what we can organize, what we can invent, and, critically, what the ecological system can sustain – not what private banking interests say we can afford.

In Pettifor’s view it is not optional, it is essential for nations around the world to re-win public control of their financial systems from the private institutions that now enrich themselves at public expense. And she takes us through the back-and-forth struggle for public control of banking, examining the ground-breaking theory of John Maynard Keynes after World War I, the dramatically changed monetary policy of the Roosevelt administration that was a precondition for the full employment policy of the original New Deal, and the gradual recapture of global banking systems by private interests since the early 1960s.

On the one hand, a rapid reassertion of public banking authority (which must include, Pettifor says, tackling the hegemony of the United States dollar as the world’s reserve currency) may seem a tall order given the urgent environmental challenges. On the other hand, the global financial order is highly unstable anyway, and Pettifor says we need to be ready next time around:

“sooner rather than later the world is going to be faced by a shuddering shock to the system. … It could be the flooding or partial destruction of a great city …. It could be widespread warfare…. Or it could be (in my view, most likely) another collapse of the internationally integrated financial system. … [N]one of these scenarios fit the ‘black swan’ theory of difficult-to-predict events. All three fall within the realm of normal expectations in history, science and economics.” (The Case for the Green New Deal, pg 64)

A final major influence acknowledged by Pettifor is American economist Herman Daly, pioneer of steady-state economics. She places this idea at the center of the Green New Deal:

“our economic goal is for a ‘steady state’ economy … that helps to maintain and repair the delicate balance of nature, and respects the laws of ecology and physics (in particular thermodynamics). An economy that delivers social justice for all classes, and ensures a liveable planet for future generations.” (The Case for the Green New Deal, pg 66)

Beyond a clear endorsement of this principle, though, Pettifor’s book doesn’t offer much detail on how our transportation system, food provisioning systems, etc, should be transformed. That’s no criticism of the book. Providing a clear explanation of the need for transformation in monetary policy; why the current system of “free mobility” of capital allows private finance to work beyond the reach of democratic control, with disastrous consequences for income equality and for the environment; and how finance was brought under public control before and can be again – this  is a big enough task for one short book, and Pettifor carries it out with aplomb.

Some paths are ruinous. Others are not.

Writing in The Nation in November of 2018, Daniel Aldana Cohen set out an essential corrective to the tone of most public discourse:

“Are we doomed? It’s the most common thing people ask me when they learn that I study climate politics. Fair enough. The science is grim, as the UN Intergovernmental Panel on Climate Change (IPCC) has just reminded us with a report on how hard it will be to keep average global warming to 1.5 degrees Celsius. But it’s the wrong question. Yes, the path we’re on is ruinous. It’s just as true that other, plausible pathways are not. … The IPCC report makes it clear that if we make the political choice of bankrupting the fossil-fuel industry and sharing the burden of transition fairly, most humans can live in a world better than the one we have now.” (The Nation, “Apocalyptic Climate Reporting Completely Misses the Point,” November 2, 2018; emphasis mine)

There’s a clear echo of Cohen’s statement in the introduction to A Planet To Win:

“we rarely see climate narratives that combine scientific realism with positive political and technological change. Instead, most stories focus on just one trend: the grim projections of climate science, bright reports of promising technologies, or celebrations of gritty activism. But the real world will be a mess of all three. (A Planet To Win, pg 3)

The quartet of authors are particularly concerned to highlight a new path in which basic human needs are satisfied for all people, in which communal enjoyment of public luxuries replaces private conspicuous consumption, and in which all facets of the economy respect non-negotiable ecological limits.

The authors argue that a world of full employment; comfortable and dignified housing for all; convenient, cheap or even free public transport; healthy food and proper public health care; plus a growth in leisure time –  this vision can win widespread public backing and can take us to a sustainable civilization.

A Planet To Win dives into history, too, with a picture of the socialist housing that has been home to generations of people in Vienna. This is an important chapter, as it demonstrates that there is nothing inherently shabby in the concept of public housing:

“Vienna’s radiant social housing incarnates its working class’s socialist ideals; the United States’ decaying public housing incarnates its ruling class’s stingy racism.” (A Planet To Win, pg 127)

Likewise, the book looks at the job creation programs of the 1930s New Deal, noting that they not only built a vast array of public recreational facilities, but also carried out the largest program of environmental restoration ever conducted in the US.

The public co-operatives that brought electricity to rural people across the US could be revitalized and expanded for the era of all-renewable energy. Fossil fuel companies, too, should be brought under public ownership – for the purpose of winding them down as quickly as possible while safeguarding workers’ pensions.

In their efforts to present a New Green Deal in glowingly positive terms, I think the authors underestimate the difficulties in the energy transition. For example, they extol a new era in which Americans will have plenty of time to take inexpensive vacations on high-speed trains throughout the country. But it’s not at all clear, given current technology, how feasible it will be to run completely electrified trains through vast and sparsely populated regions of the US.

In discussing electrification of all transport and heating, the authors conclude that the US must roughly double the amount of electricity generated – as if it’s a given that Americans can or should use nearly as much total energy in the renewable era as they have in the fossil era.1

And once electric utilities are brought under democratic control, the authors write, “they can fulfill what should be their only mission: guaranteeing clean, cheap, or even free power to the people they serve.” (A World To Win, pg 53; emphasis mine)

A realistic understanding of thermodynamics and energy provision should, I think, prompt us to ask whether energy is ever cheap or free – (except in the dispersed, intermittent forms of energy that the natural world has always provided).

As it is, the authors acknowledge a “potent contradiction” in most current recipes for energy transition:

“the extractive processes necessary to realize a world powered by wind and sun entail their own devastating social and environmental consequences. The latter might not be as threatening to the global climate as carbon pollution. But should the same communities exploited by 500 years of capitalist and colonial violence be asked to bear the brunt of the clean energy transition …?” (A Planet To Win, pg 147-148)

With the chapter on the relationship between a Green New Deal in the industrialized world, and the even more urgent challenges facing people in the Global South, A World To Win gives us an honest grappling with another set of critical issues. And in recognizing that “We hope for greener mining techniques, but we shouldn’t count on them,” the authors make it clear that the Green New Deal is not yet a fully satisfactory program.

Again, however, they accomplish a lot in just under 200 pages, in support of their view that “An effective Green New Deal is also a radical Green New Deal” (A Planet To Win, pg 8; their emphasis). The time has long passed for timid nudges such as modest carbon taxes or gradual improvements to auto emission standards.

We are now in “a trench war,” they write, “to hold off every extra tenth of a degree of warming.” In this war,

“Another four years of the Trump administration is an obvious nightmare. … But there are many paths to a hellish earth, and another one leads right down the center of the political aisle.” (A Planet To Win, pg 180)


1 This page on the US government Energy Information Agency website gives total US primary energy consumption as 101 quadrillion Btus, and US electricity use as 38 quadrillion Btus. If all fossil fuel use were stopped but electricity use were doubled, the US would then use 76 quadrillion Btus, or 75% of current total energy consumption.

Questions as big as the atmosphere

A review of After Geoengineering

Also published at Resilience.org

After Geoengineering is published by Verso Books, Oct 1 2019.

What is the best-case scenario for solar geoengineering? For author Holly Jean Buck and the scientists she interviews, the best-case scenario is that we manage to keep global warming below catastrophic levels, and the idea of geoengineering quietly fades away.

But before that can happen, Buck explains, we will need heroic global efforts both to eliminate carbon dioxide emissions and to remove much of the excess carbon we have already loosed into the skies.

She devotes most of her new book After Geoengineering: Climate Tragedy, Repair, and Restoration to proposed methods for drawing down carbon dioxide levels from the atmosphere. Only after showing the immense difficulties in the multi-generational task of carbon drawdown does she directly discuss techniques and implications of solar geoengineering (defined here as an intentional modification of the upper atmosphere, meant to block a small percentage of sunlight from reaching the earth, thereby counteracting part of global heating).

The book is well-researched, eminently readable, and just as thought-provoking on a second reading as on the first. Unfortunately there is little examination of the way future energy supply constraints will affect either carbon drawdown or solar engineering efforts. That significant qualification aside, After Geoengineering is a superb effort to grapple with some of the biggest questions for our collective future.

Overshoot

The fossil fuel frenzy in the world’s richest countries has already put us in greenhouse gas overshoot, so some degree of global heating will continue even if, miraculously, there were an instant political and economic revolution which ended all carbon dioxide emissions tomorrow. Can we limit the resulting global heating to 1.5°C? At this late date our chances aren’t good.

As Greta Thunberg explained in her crystal clear fashion to the United Nations Climate Action Summit:

“The popular idea of cutting our emissions in half in 10 years only gives us a 50% chance of staying below 1.5C degrees, and the risk of setting off irreversible chain reactions beyond human control.

“Maybe 50% is acceptable to you. But those numbers don’t include tipping points, most feedback loops, additional warming hidden by toxic air pollution or the aspects of justice and equity. They also rely on my and my children’s generation sucking hundreds of billions of tonnes of your CO2 out of the air with technologies that barely exist.” 1

As Klaus Lackner, one of the many researchers interviewed by Buck, puts it, when you’ve been digging yourself into a hole, of course the first thing you need to do is stop digging – but then you still need to fill in the hole.2

How can we fill in the hole – in our case, get excess carbon back out of the atmosphere? There are two broad categories, biological processes and industrial processes, plus some technologies that cross the lines. Biological processes include regenerative agriculture and afforestation while industrial processes are represented most prominently by Carbon Capture and Sequestration (CCS).

Buck summarizes key differences this way:

“Cultivation is generative. Burial, however, is pollution disposal, is safety, is sequestering something away where it can’t hurt you anymore. One approach generates life; the other makes things inert.” (After Geoengineering (AG), page 122)

Delving into regenerative agriculture, she notes that “over the last 10,000 years, agriculture and land conversion has decreased soil carbon globally by 840 gigatons, and many cultivated soils have lost 50 to 70 percent of their original organic carbon” (AG, p 101).

Regenerative agriculture will gradually restore that carbon content in the soil and reduce carbon dioxide in the air – while also making the soil more fertile, reducing wind and water erosion, increasing the capacity of the soil to stay healthy when challenged by extreme rainfalls or drought, and making agriculture ecologically sustainable in contrast to industrial agriculture’s ongoing stripping the life from soil.

Regenerative agriculture cannot, however, counteract the huge volumes of excess carbon dioxide we are currently putting into the atmosphere. And even when we have cut emissions to zero, Buck writes, regenerative agriculture is limited in how much of the excess carbon it can draw down:

“soil carbon accrual rates decrease as stocks reach a new equilibrium. Sequestration follows a curve: the new practices sequester a lot of carbon at first, for the first two decades or so, but this diminishes over time toward a new plateau. Soil carbon sequestration is therefore a one-off method of carbon removal.” (AG, p 102)

There are other types of cultivation that can draw down carbon dioxide, and Buck interviews researchers in many of these fields. The planting of billions of trees has received the most press, and this could store a lot of carbon. But it also takes a lot of land, and it’s all too easy to imagine that more frequent and fiercer wildfires could destroy new forests just when they have started to accumulate major stores of carbon.

Biochar – the burying of charcoal in a way that stores carbon for millennia while also improving soil fertility – was practiced for centuries by indigenous civilizations in the Amazon. Its potential on a global scale is largely untapped but is the subject of promising research.

In acknowledging the many uncertainties in under-researched areas, Buck does offer some slender threads of hope here. Scientists say that “rocks for crops” techniques – in which certain kinds of rock are ground up and spread on farmland – could absorb a lot of carbon while also providing other soil nutrients. In the lab, the carbon absorption is steady but geologically slow, but there is some evidence that in the real world, the combined effects of microbes and plant enzymes may speed up the weathering process by at least an order of magnitude. (AG, p 145-146)

The cultivation methods offer a win-win-win scenario for carbon drawdown – but we’re on pace to a greenhouse gas overshoot that will likely dwarf the drawdown capacity of these methods. Buck estimates that cultivation methods, at the extremes of their potential, could sequester perhaps 10 to 20 gigatons (Gt) of carbon dioxide per year (and that figure would taper off once most agricultural soils had been restored to a healthy state). That is unlikely to be anywhere near enough:

“Imagine that emissions flatline in 2020; the world puts in a strong effort to hold them steady, but it doesn’t manage to start decreasing them until 2030. … But ten years steady at 50 Gt CO2 eq [carbon dioxide equivalent emissions include other gases such as methane] – and there goes another 500 Gt CO2 eq into the atmosphere. That one decade would cancel out the 500 Gt CO2 eq the soils and forests could sequester over the next 50 years (sequestered at an extreme amount of effort and coordination among people around the whole world).” (AG p 115)

With every year that we pump out fossil fuel emissions, then, we compound the intergenerational crime we have already committed against Greta Thunberg and her children’s generations. With every year of continued emissions, we increase the probability that biological, generative methods of carbon drawdown will be too slow. With every year of continued emissions, we increase the degree to which future generations will be compelled to engage in industrial carbon drawdown work, using technologies which do not enrich the soil, which produce no food, which will not directly aid the millions of species struggling for survival, and which will suck up huge amounts of energy.

Carbon Capture and Sequestration

Carbon Capture and Sequestration (CCS) has earned a bad name for good reasons. To date most CCS projects – even those barely past the concept stage – have been promoted by fossil fuel interests. CCS projects offer them research subsidies for ways to continue their fossil fuel businesses, plus a public relations shine as proponents of “clean” energy.

A lignite mine in southwest Saskatchewan. This fossil fuel deposit is home to one of the few operating Carbon Capture and Sequestration projects. Carbon from a coal-fired generating station is captured and pumped into a depleting oil reservoir – for the purpose of prolonging petroleum production.

Buck argues that in spite of these factors, we need to think about CCS technologies separate from their current capitalist contexts. First of all, major use of CCS technologies alongside continued carbon emissions would not be remotely adequate – we will need to shut off carbon emissions AND draw down huge amounts of carbon from the atmosphere. And there is no obvious way to fit an ongoing, global program of CCS into the framework of our current corporatocracy.

The fossil fuel interests possess much of the technical infrastructure that could be used for CCS, but their business models rely on the sale of polluting products. So if CCS is to be done in a sustained fashion, it will need to be done in a publicly-funded way where the service, greenhouse gas drawdown, is for the benefit of the global public (indeed, the whole web of life, present and future); there will be no “product” to sell.

However CCS efforts are organized, they will need to be massive in order to cope with the amounts of carbon emissions that fossil fuel interests are still hell-bent on releasing. In the words of University of Southern California geologist Joshua West,

“The fossil fuels industry has an enormous footprint …. Effectively, if we want to offset that in an industrial way, we have to have an industry that is of equivalent proportion ….” (AG, p 147)

Imagine an industrial system that spans the globe, employing as many people and as much capital as the fossil fuel industries do today. But this industry will produce no energy, no wealth, no products – it will be busy simply managing the airborne refuse bequeathed by a predecessor economy whose dividends have long since been spent.

So while transitioning the entire global economy to strictly renewable energies, the next generations will also need enough energy to run an immense atmospheric garbage-disposal project.

After Geoengineering gives brief mentions but no sustained discussion of this energy crunch.

One of the intriguing features of the book is the incorporation of short fictional sketches of lives and lifestyles in coming decades. These sketches are well drawn, offering vivid glimpses of characters dealing with climate instability and working in new carbon drawdown industries. The vignettes certainly help in putting human faces and feelings into what otherwise might remain abstract theories.

Yet there is no suggestion that restricted energy supplies will be a limiting factor. The people in the sketches still travel in motorized vehicles, check their computers for communications, run artificial intelligence programs to guide their work, and watch TV in their high-rise apartments. In these sketches, people have maintained recognizably first-world lifestyles powered by zero-emission energy technologies, while managing a carbon drawdown program on the same scale as today’s fossil fuel industry.

If you lean strongly towards optimism you may hope for that outcome – but how can anyone feel realistically confident in that outcome?

The lack of a serious grappling with this energy challenge is, in my mind, the major shortcoming in After Geoengineering. And big questions about energy supply will hang in the air not only around carbon sequestration, but also around solar geoengineering if humanity comes to that.

Shaving the peak

Solar geoengineering –  the intentional pumping of substances into the upper atmosphere into order to block a percentage of incoming sunlight to cool the earth – has also earned a bad name among climate activists. It is, of course, a dangerous idea – just as extreme as the practice of pumping billions of tonnes of extra carbon dioxide into the atmosphere to overheat the earth.

But Buck makes a good case – a convincing case, in my opinion – that in order to justifiably rule out solar geoengineering, we and our descendants will have to do a very good job at both eliminating carbon emissions and drawing down our current excess of carbon dioxide, fast.

Suppose we achieve something which seems far beyond the capabilities of our current political and economic leadership. Suppose we get global carbon emissions on a steep downward track, and suppose that the coming generation manages to transition to 100% renewable while also starting a massive carbon drawdown industry. That would be fabulous – and it still may not be enough.

As Buck points out, just as it has proven difficult to predict just how fast the earth system responds to a sustained increased in carbon dioxide levels, nobody really knows how quickly the earth system would respond to a carbon drawdown process. The upshot: even in an era where carbon dioxide levels are gradually dropping, it will be some time before long-term warming trends reverse. And during that interim a lot of disastrous things could happen.

Take the example of coral reefs. Reef ecosystems are already dying due to ocean acidification, and more frequent oceanic heat waves threaten to stress reefs beyond survival. Buck writes,

“Reefs protect coasts from storms; without them, waves reaching some Pacific islands would be twice as tall. Over 500 million people depend on reef ecosystems for food and livelihoods. Therefore, keeping these ecosystems functioning is a climate justice issue.” (AG, p 216)

In a scenario about as close to best-case as we could realistically expect, the global community might achieve dropping atmospheric carbon levels, but still need to buy time for reefs until temperatures in the air and in the ocean have dropped back to a safe level. This is the plausible scenario studied by people looking into a small-scale type of geoengineering – seeding the air above reefs with a salt-water mist that could, on a regional scale only, reflect back sunlight and offer interim protection to essential and vulnerable ecosystems.

One could say that this wouldn’t really be geoengineering, since it wouldn’t affect the whole globe – and certainly any program to affect the whole globe would involve many more dangerous uncertainties.

Yet due to our current and flagrantly negligent practice of global-heating-geoengineering, it is not hard to imagine a scenario this century where an intentional program of global-cooling-geoengineering may come to be a reasonable choice.

Buck takes us through the reasoning with the following diagram:

From After Geoengineering, page 219

If we rapidly cut carbon emissions to zero, and we also begin a vast program of carbon removal, there will still be a significant time lag before atmospheric carbon dioxide levels have dropped to a safe level and global temperatures have come back down. And in that interim, dangerous tipping points could be crossed.

To look at just one: the Antarctic ice sheets are anchored in place by ice shelves extending into the ocean. When warming ocean water has melted these ice shelves, a serious tipping point is reached. In the words of Harvard atmospheric scientist Peter Irvine,

“Because of the way the glaciers meet the ocean, when they start to retreat, they have kind of a runaway retreat. Again, very slow, like a couple of centuries. Five centuries. But once it starts, it’s not a temperature-driven thing; it’s a dynamic-driven thing … Once the ice shelf is sheared off or melted away, it’s not there to hold the ice sheet back and there’s this kind of dynamic response.” (AG, p 236)

The melting of these glaciers, of course, would flood the homes of billions of people, along with a huge proportion of the world’s agricultural land and industrial infrastructure.

So given the current course of history, it’s not at all far-fetched that the best option available in 50 years might be a temporary but concerted program of solar geoengineering. If this could “shave the peak” off a temperature overshoot, and thereby stop the Antarctic ice from crossing a tipping point, would that be a crazy idea? Or would it be a crazy idea not to do solar geoengineering?

These questions will not go away in our lifetimes. But if our generation and the next can end the fossil fuel frenzy, then just possibly the prospect of geoengineering can eventually be forgotten forever.


1 Greta Thunberg, “If world leaders choose to fail us, my generation will never forgive them”, address to United Nations, New York, September 23, 2019, as printed in The Guardian.
2 In the webinar “Towards a 20 GT Negative CO2 Emissions Industry”, sponsored by Security and Sustainability Forum, Sept 19, 2019.

Designing Climate Solutions – a big-picture view that doesn’t skimp on details

Also published at Resilience.org

Let us pause for a moment of thanks to the policy wonks, who work within the limitations of whatever is currently politically permissible and take important steps forward in their branches of bureaucracy.

Let us also give thanks to those who cannot work within those limitations, and who are determined to transform what is and is not politically permissible.

Designing Climate Solutions: A Policy Guide for Low-Carbon Energy is published by Island Press, November 2018.

An excellent new book from Island Press makes clear that both approaches to the challenge of climate disruption are necessary, though it deals almost exclusively with the work of policy design and implementation.

Designing Climate Solutions, by Hal Harvey with Robbie Orvis and Jeffrey Rissman, is a thoughtful and thorough discussion of policy options aimed at reducing greenhouse gas emissions.

Harvey is particularly focused on discovering which specific policies are likely to have the biggest – and equally important, the quickest – impact on our cumulative greenhouse gas emissions. But he also pays close attention to the fine details of policy design which, if ignored, can cause the best-intentioned policies to miss their potentials.

One of the many strengths of the book is the wealth of graphics which present complex information in visually effective formats.

A political acceptable baseline

Though political wrangling is barely discussed, Harvey notes that “It goes without saying that a key consideration of any climate policy is whether it stands a chance of being enacted. A highly abating and perfectly designed policy is not worth pursuing if there is no chance it can be implemented.”

He takes as a starting point the target of the Paris Agreement of 2015, which has received agreement in principle from nearly all countries: to reduce emissions enough by 2050 to give us at least a 50% chance of avoiding more than 2°C global warming. (We’ll return later to the question of the reasonableness of that goal.)

Throughout the book, then, different aspects of climate policy are evaluated for their relative contributions to the 2°C goal.

Working with a climate policy computer model which is discussed in detail in an appendix and which is available online, Harvey presents this framework: a “business as usual” scenario would result in emissions of 2,253 Gigatons of CO2-equivalent from 2020 to 2050, but that must be reduced by 1,185 Gigatons.

The following chart presents what Harvey’s team believes is the realistic contribution of various sectors to the emission-reduction goal.

“Figure 3.4 – Policy contributions to meeting the 2°C global warming target.” (From Hal Harvey et. al., Designing Climate Solutions, Island Press, page 67)

The key point from this chart is that about 70% of the reductions are projected to come in three broad areas: changes to industrial production, conversion of electrical generation (“power sector”) to renewable energy, and cross-sector pricing of carbon emissions in line with their true social costs.

(The way things are categorized makes a big difference. For example, agriculture is slotted as a subset of the industrial sector, which boosts the relative importance of this sector for emissions-reduction potential.)

Harvey buttresses the argument by looking at the costs – or in many cases, cost-savings – of emissions-reduction policies. The following chart shows the relative costs of policies on the vertical dimension, and their relative contribution to emissions reduction on the horizontal dimension.

“Figure 3.2 – The policy cost curve shows the cost-effectiveness and emission reduction potential of different policies.” (From Hal Harvey et. al., Designing Climate Solutions, Island Press, page 59)

 

The data portrayed in this chart can guide policy in two important ways: policy-makers can focus on the areas which make the most difference in emissions, while also being mindful of the cost issues that can be so important in getting political buy-in.

It may come as a surprise that the transportation and building sectors, in this framework, are responsible for only small slices of overall emission reductions.

Building Codes and Appliance Standards are pegged to contribute about 5% of the emission reductions, while a suite of transportation policies could together contribute about 7% of emission reductions.

A clear view of the overriding importance of reducing cumulative emissions by 2050 helps explain these seemingly small contributions – and why it would nevertheless be a mistake to neglect these sectors.

To achieve climate policy goals it’s critical to reduce emissions quickly – and that’s hard to do in the building and transportation sectors. Building stock tends to last for generations, and major appliances typically last 10 years or more. Likewise car, truck and bus fleets tend to stay on the road for ten years or more. Thus the best building codes and the best standards for vehicle efficiency will have a very limited impact on carbon emissions over the next 15 years. By the same token, even the most rapid electrification possible of car and truck fleets won’t have full impact on emissions until the electric grid is generally decarbonized.

These are among the reasons that decarbonizing the electric grid, along with cross-sector pricing of carbon emissions, are so important to emissions reduction in the short term.

Meanwhile, though, it is also essential to get on with the slower work of upgrading buildings, appliances, transportation systems, and decarbonized agricultural and industrial processes. In the longer term, especially after 2050 when it will be essential to achieve zero net carbon emissions, even (relatively) minor contributions to emissions will be important. But as Harvey puts it, “There is no mopping up the last 10 percent of carbon emissions if we don’t eliminate the first 90 percent!”

International case studies

Harvey gets deep into the nuances of policy with an excellent discussion of the differences between carbon taxes and carbon caps. This helps readers to understand the value of hybrid approaches, and the importance in some countries of policies to limit “leakage”, whereby major industries simply shift production to jurisdictions without carbon prices or caps.

The many case studies – from the US, Germany, China, Japan, and other countries – illustrate policy designs that work especially well, or conversely, policies that have resulted in unintentional consequences which reduce their effectiveness.

These case studies also provide a reminder of the amount of hard work and dedication that mostly unsung bureaucrats have put in to the cause of mitigating climate disruption. As much as we may mourn that political leadership has been sorely lacking and that we appear to be losing the battle to forestall climate disaster, it seems undeniable that we would be considerably worse off if it weren’t for the accomplishments of civil servants who have eked out small gains in their own sectors.

For example, the hard-won feed-in tariffs and other policies promoting renewable energies for electric generation haven’t yet resulted in a wholesale transformation of the grid – but they’ve resulted in an exponential drop in the cost per kilowatt of solar- and wind-generated power. Performance standards for many types of engines have resulted in significant improvements in energy efficiency. These improvements have so far mostly been offset by our economy’s furious push to sell more and bigger products – but these efficiency gains could nevertheless play a key role in a sane economic system of the future.

The 2° gamble

Although most of the book is devoted to details of particular policies, Harvey’s admirably lucid discussion of the urgency of the climate challenge makes clear that we need far greater commitment from the highest levels of political leadership.

He notes that the reality of climate action has been far less impressive than the high-minded rhetoric. With few exceptions the nations responsible for most of the carbon emissions have been woefully slow to act, which makes the challenge both more urgent and more difficult.

Harvey illustrates this point with the chart below. The black solid and dotted lines represent the necessary progress with emissions, if we had been smart enough to ensure emissions peaked in 2015. The red lines show what may now be the best-case scenario – an emissions peak in 2030 – and the much more drastic reductions that will then be required to have a 50% chance of keeping global warming to 2°C or less.

“Figure I-7. The longer the delay in peaking emissions, the harder it becomes to meet the same carbon budget.” (From Hal Harvey et. al., Designing Climate Solutions, Island Press, page 9)

We might well ask if a 50% likelihood of worldwide climate catastrophe is a prudent and reasonable policy aim, or certifiably bonkers. Still, a 50/50 chance of disaster is somewhat better than assured civilizational collapse, which is the destination of “business as usual.”

In any case, the political climate has changed considerably in the short time since Harvey and colleagues prepared Designing Climate Solutions. With the challenge to the political status quo embodied in the Green New Deal movement, it now seems plausible that some major carbon-emitting countries will enact more appropriate greenhouse-gas emission targets in the next few years. If that comes to pass, these new goals will need to be translated into effective policy, and the many lessons in Designing Climate Solutions will remain important.

What about fossil fuel subsidies?

In a book of such wide and ambitious scope, it is inevitable that some important facets are omitted or given short shrift.

The issues of deforestation and forest degradation are duly noted, but Harvey declines to delve into this subject by explaining that “The science, the policies, and the actors for reducing emissions from land use are very different from those for energy and industrial processes, and they deserve separate treatment from experts in land use policy.”

The issue of embodied carbon does not come up in the text. In assessing the replacement of fossil-powered vehicle fleets by electric vehicles, for example, is the embodied carbon inherent in current manufacturing processes a significant factor? Readers will need to search elsewhere for that answer.

Also noteworthy is the absence of any acknowledgement that economic growth itself may be a problem. For all the discussion of ways to transform industrial processes, there is no discussion of whether the scale of industrial output should also be reduced. In most countries today, of course, a civil servant who tries to promote degrowth will soon become an expert in unemployment, but that highlights the need for a wider and deeper look at economic fundamentals than is currently politically permissible.

The missing subject that seems most germane to the book’s central purpose, though, is the issue of subsidies for fossil fuels. Harvey does state in passing that “for many sectors and technologies, pricing is the key. Removing subsidies for fossil fuels is the first step – though still widely ignored.” Indeed, many countries have paid lip service to the need to stop subsidizing fossil fuels, but few have taken action along these lines.

But throughout Harvey’s extensive examination of pricing signals – e.g., feed-in tariffs, carbon taxes, carbon caps, low-interest loans to renewable energy projects – there is no discussion of the degree to which existing fossil fuel subsidies continue to undercut the goals of climate policy and retard the transition to a low-carbon economy.

In my next post I’ll take up this subject with a look at how some governments, while tepidly supporting the transformation envisioned in the Paris Agreements, continue to safeguard their fossil fuel sectors through generous subsidies.


Illustration at top adapted from Designing Climate Solutions cover by David Ter Avanesyan.

Can nuclear power extend the economic expansion?

Also published at Resilience.org and BiophysEco.

Richard Rhodes’ new book Energy: A Human History does an excellent job of describing the scientific and technological hurdles that had to be cleared in the development of, for example, an internal combustion engine which can convert refined petroleum into forward motion.

But he gives short shrift to the social and political forces that have been equally important in determining how technological advances shape our world. That internal combustion engine might be a wonder of ingenuity, but was there any scientific reason we should make multi-tonne vehicles the primary mode of transportation for single passengers in cities, drastically reconfiguring urban landscapes in the process? When assiduous research resulted in more efficient engines, did science also dictate that we should use those engines to drive bigger and heavier SUV’s, and then four-wheel-drive, four-door pick-up trucks, to our suburban grocery superstores?

Unfortunately, Rhodes presents the benefits of modern science as if they are all inextricably wrapped up in our current high-energy-consumption economy, implying that human prosperity must end unless we find ways to maintain this high-energy system.

In this second part of a look at Energy (first installment here), we’ll delve into these questions as they relate to Rhodes’ strident defense of nuclear power.

To set the context, Rhodes argues that the only realistic – and the most ethical – way forward is a gradual progression on the path we are already taking, and that means an “all energy sources except coal and oil” strategy:

“Every energy system has its advantages and disadvantages …. And given the scale of global warming and human development, we will need them all if we are to finish the centuries-long process of decarbonizing our energy supply – wind, solar, hydro, nuclear, natural gas.”1

Three key points here: First, Rhodes recognizes the severity and urgency of the climate problem.

Second, he believes we have been “decarbonizing our energy supply” for centuries. That is true with respect to intensity: we now release fewer units of carbon for each unit of energy than we did in the 19th century.2 But in an overall sense, we emit vastly more carbon cumulatively (and vastly more carbon per capita) than we used to. It is the overall carbon emissions, not the carbon/energy intensity ratio, that matters to the climate.

Third, while energy production via natural gas has relatively low carbon emissions at the point of combustion, there is wide recognition that methane leaks throughout the production/transmission chain are major sources of greenhouse gas emissions, which may counteract the benefits of switching from coal to gas. Rhodes makes only an oblique reference to this critical problem in current natural gas usage.

It’s the issue of nuclear power, though, that really brings out Rhodes’ rhetorical heat. Consider this ad hominem attack:

“Antinuclear activists, whose agendas originated in a misinformed neo-Malthusian foreboding of overpopulation (and a willingness at the margin to condemn millions of their fellow human beings to death from disease and starvation), may fairly be accused of disingenuousness in their successive arguments against the safest, least polluting, least warming, and most reliable energy source humanity has yet devised.3

If someone warns that a social or technological development is likely to result in mass death, does that logically mean they want mass death, or that they are indifferent to it? Obviously not. They may well be sincerely motivated by a desire to save lives – just as those who promote the same social or technological development might sincerely believe that is the best way to save lives and promote prosperity.

So I think it is Rhodes who is being disingenuous with his ad hominem argument – even though I happen to agree with some of his substantive points on the relative safety of nuclear power.

What could go wrong?

As one who has lived for fifteen years just downwind of major nuclear facilities – first a uranium processing plant, more recently a nuclear power generator – I’ve had lots of incentive to study the potential safety hazards of the nuclear power industry. And on the issue of the relative operating safety of nuclear power generation, my conclusions have been much the same as those Rhodes puts forth.

I frequently take a short bike ride along the Lake Ontario Waterfront Trail through the buffer zone around the Darlington Nuclear Generating Station. Is this a significant hazard to my health? Yes it is, but only because this route also requires me to share the road with trucks and cars for a few kilometers, and to ride right beside a stream of pollution-emitting traffic on Ontario’s busiest expressway.

As a close neighbour of nuclear facilities, my risk of death due to sudden catastrophic nuclear power accident is several orders of magnitude lower than my risk of death due to sudden catastrophic traffic accident. (Worldwide, well over a million people are killed in traffic accidents per year.4)

As for the health risk due to chronic exposure to the amounts of radiation that are emitted by a current Canadian nuclear generating plant, I fully concur with Rhodes’ more general conclusion: “Low doses of radiation are not only low risk; they’re also lost in the noise of other sources of environmental insult.”5

Likewise, I share Rhodes’ conclusion that shutting down our existing nuclear power plants for environmental reasons, while continuing to rely on coal for a significant part of electricity generation, is daft6 – we should replace carbon-emitting generating systems first.

In my region, I would be sorry to see Darlington Nuclear Station shut down if Ontario were still significantly reliant on gas-powered peaker plants, as it is now. And given that we have a very long way to go in electrifying personal transportation and home heating, our electricity demand may increase significantly, making the transition to a fully renewable electricity generation system that much farther down the road. In that context, I think our existing nuclear power plants are a better option environmentally than continued or increasing use of any fossil fuel, natural gas included, for generation of electricity.

But should we commission and build new nuclear power plants? That is a very different question. Rhodes recognizes that the economic viability of the nuclear power industry is very much in question, but he makes no significant attempt in Energy to resolve the economic question.

To adequately answer the economic viability question, we would need a much wider conception of science than the one that comes through in Rhodes’ book.7

Beyond physics and chemistry

The science Rhodes celebrates in Energy: A Human History falls almost entirely within very basic physics and chemistry. The discoveries and developments Rhodes discusses are highly significant, and they will always remain foundational – but they are not sufficient for a clear understanding of technological systems, which are also social phenomena.

A more recent scientific advance is essential in coming to grips with our current energy challenges. This is the concept of Energy Return on Investment (EROI). Over his long and distinguished career, ecologist Charles A.S. Hall posited that organisms, ecological communities, and human societies must derive more usable energy from their activities than the energy they invest in those activities. With this simple insight8, Hall gave economics a foundation in the very principles of thermodynamics that Rhodes reveres.

The resulting field of biophysical economics provides a deeper understanding of the socio-technological revolutions that Rhodes simply ascribes to “science”. After studying the Energy Return on Investment of major energy sources over the past 200 years, we can understand how the rapid exploitation of fossil fuels provided a huge boost in the the energy available to society, while simultaneously freeing the great majority of people from energy-procuring activities so that they could work instead at a wide variety of new activities and industries. We can understand that if any society is to use a high quantity of energy per person, while employing only a small number of people in its energy sector, then its energy sector needs a high rate of Energy Return on Investment.

With readily accessible supplies of coal, oil and natural gas, industrial civilization in the past 200 years has benefitted from a very high Energy Return on Investment. But with “sweet spots” exhausted or in depletion phases, the EROI of the fossil fuel economy has been in marked decline for the past few decades.

Thus one of the key questions about a supposed nuclear renaissance is, can the nuclear power industry achieve an EROI comparable to that of the fossil fuel economy we have known to date? Most published analyses say no9 – from an Energy Return On Investment standpoint, nuclear power generation is (at worst) not worth doing at all, or (at best) worth doing even though it will produce much more expensive energy than the energy we came to depend on during the twentieth century.

If nuclear power generation has a low EROI, in sum, it cannot and will not fuel a continued economic expansion.

Rhodes argues that nuclear power is vitally important because we really need it to extend our current model of prosperity to billions more people now and in coming generations, and he claims the mantle of science for this position. But a broader and deeper application of scientific analysis can deal with the economic viability questions about nuclear power that he simply sidesteps.

Illustration at top: high-voltage transmission lines on grounds of Darlington Nuclear Station, on north shore of Lake Ontario east of Toronto

 


NOTES

1Energy: A Human History, page 337 (return to text)

2This is a point explained in more detail by Vaclav Smil, who also gives a perspective on the relative degree of decarbonization. From 1900 to 2000, he says, “the average carbon intensity of the world’s fossil fuel supply kept on declining: when expressed in terms of carbon per unit of the global total primary energy supply, it fell from nearly 28 kg C/GJ [GigaJoule] in 1900 to just below 25 in 1950 and to just over 19 in 2010, roughly a 30% decrease; subsequently, as a result of China’s rapidly rising coal output, it rose a bit during the first decade of the twenty-first century.” Smil, Energy and Civilization: A History, page 270. (return to text)

3Energy: A Human History, page 336 (return to text)

4World Health Organization says there were 1.25 million traffic deaths in 2013. (return to text)

5Energy: A Human History, page 324 (return to text)

6This general statement must be qualified, of course, by noting that some particular nuclear plants should be shut down because their designs were inherently flawed to begin with, or because they have aged beyond the point where they can be maintained and operated safely. (return to text)

7Even if one accepts that the operating safety record of nuclear power stations is exemplary, there are the major issues of nuclear weapons proliferation, and the long-term storage of highly radioactive wastes. Rhodes doesn’t mention weapons proliferation, and he cavalierly dismisses the long-term disposal issue: “The notion that such waste must be successfully protected from exposure for hundreds of thousands of years is counter to how humans handle every other kind of toxic material we produce. We usually bury it, but we also discount its future risk, on the reasonable grounds that we owe concern to one or, at best, two generations beyond our own …” (Energy: A Human History, page 337, emphasis mine). Yes, that’s what we usually do, but in what sense is that “reasonable”? (return to text)

8Though the basic insight is simple, measuring and calculating EROI can be anything but simple. A key issue is deciding how far out to draw the boundaries of an analysis. As Hall, Lambert and Balogh noted in “EROI of different fuels and the implications for society” in 2014, “Societal EROI is the overall EROI that might be derived for all of a nation’s or society’s fuels by summing all gains from fuels and all costs of obtaining them. To our knowledge this calculation has yet to be undertaken because it is difficult, if not impossible, to include all the variables necessary to generate an all-encompassing societal EROI value”. (return to text)

9In Scientific American (April 2013) Mason Inman cited an EROI of 5 for nuclear electricity generation – lower than photovoltaic or wind generators, and only a small fraction of the EROI of 69 that Inman cited for global conventional oil production in 2011. In 2014 a meta-review of studies, EROI of different fuels and the implications for society, gave a mean EROI of 14 for nuclear power. A paper by the World Nuclear Association cites outliers among the published studies, highlighting a conclusion that nuclear generation of electricity has a higher average EROI than hydro or fossil fuel generating systems, and is “one order of magnitude more effective than photovoltaics and wind power”. (return to text)

Energy: A Human History – a slim slice of history and science

Also published at Resilience.org and BiophysEco.

“The population of the earth has increased more than sevenfold since 1850 – from one billion to seven and a half billion – primarily because of science and technology,” Richard Rhodes concludes at the end of his new book Energy: A Human History. “Far from threatening civilization, science, technology, and the prosperity they create will sustain us as well in the centuries to come.”1

Rhodes tells an engaging tale of energy transitions over some 500 years. Yet the limitations in his field of view become critical in the book’s concluding chapter, when he reveals which particular axe he is especially eager to grind.

Both the title of the book and its timing invite comparison with Vaclav Smil’s 2017 work Energy and Civilization: A History (reviewed here). There is a significant overlap, most notably in both author’s views that major energy transitions – from wood to coal, from coal to petroleum – have been multi-generational processes.

But Rhodes’ scope is far narrower, both in time and in geography.

Rhodes begins his story in sixteenth-century England. His cast of characters is overwhelmingly Anglo-American and male, with a sprinkling of western Europeans, and only a brief excursion outside of “western civilization” to discuss oil exploration in Saudi Arabia.

Smil, by contrast, starts his book in pre-history, with an erudite discussion of the energy implications of human evolution. He follows with more than 200 pages on developments in energy usage from ancient times to the Middle Ages, in Africa, India, China, Europe, and Mesoamerica.

Smil’s readers, then, arrive at his discussion of the industrial revolution and the fossil fuel era with an understanding that millennia of progressive developments, around the world, had gone into the technologies and social organizations available to sixteenth-century Englishmen.

The unspoken implication in Rhodes’ tale is that the men of the Royal Society of London started with a blank slate, and all our current technological marvels are due wholly to the magnificence of their particular current in science.

One question that never arises in Rhodes’ book is, how did it happen that a class of educated men had the time and resources to ponder theories, conduct long series of experiments, and write and discuss their essays? There is no mention that during these same centuries, the countries of western Europe were drawing vast quantities of basic resources from Africa and the Americas, at the cost of millions of lives.

In short, this is a woefully incomplete history of energy. But within those limitations, Rhodes writes engagingly and with admirable clarity.

A thermodynamic page-turner

For anyone interested in basic issues of physics and technology, the progression from scattered awareness of curious phenomena, to testable theories, to technologies that were applied on a mass scale and changed everyday life, makes a fascinating story. For example, observations of static electricity from a cat’s hair, frightening strikes of lightning, and the effects of magnets eventually grew into a comprehensive theory of electromagnetism. Rhodes ably outlines how this led through development of crude batteries, then to simple generators, and eventually to the construction of a massive generator harnessing some of the power of Niagara Falls for a new phase of the Industrial Revolution.

Likewise, his discussion of the long gestation of the coal-fired steam engine – which depended on an understanding of basic issues of thermodynamics as well as refinements in metal-working needed for the construction of high-quality boilers – illuminates important factors in the birth of the fossil-fuel era.

An excellent section on early oil drilling and refining processes leads to a fascinating aside: the profitable introduction of lead as a performance-enhancing additive to gasoline, notwithstanding severe health effects which were noticed and decried at the earliest stages of the leaded gas era.

Credit where credit is due

The social effects of these developments in basic and applied science have been sweeping and many of them have been salutary. It would be foolish to deny that science has played a major role in increasing life expectancy and making rapid population growth possible.

Yet many historians would argue that social and political factors such as labour rights and the push for universal education have been equally important.

Of most direct importance to Rhodes’ subject, it is clear that science was critical in helping us understand principles of thermodynamics and helping us harness the power in both fossil fuels and and renewable resources. But science has not decreed that, once having learned to extract and consume fossil fuels, we should use up these resources as fast as humanly possible. That trend, rather, is due to an economic system that requires profits to increase continuously and exponentially.

Likewise, science taught us how to use the fossil fuel resources which have helped boost our population seven-fold in the past 170 years. But science did not create those resources, which were cooking in the earth’s cavities for millions of years before the first protohuman scientist conducted the first experiment.

If, following Rhodes’ thinking, we give science the whole credit for making a population explosion possible, we should also credit science with blowing through millions of years of accumulated energy resources in just a few hundred years. We should give science credit for the fact that billions of people live in areas already being severely impacted by climate change caused by fossil fuel emissions (even though those people typically have used minimal quantities of fossil fuel themselves.) And we should ask, why can’t science come up with a cost- and time-effective way of replacing all those fossil fuels, so that all 7 billion of us plus our more numerous descendants can keep on living the high-energy lifestyle to which (some of) us are accustomed?

Ah, but science has already found a big part of the next answer, Rhodes might answer: nuclear power.

The questions raised by Rhodes’ concluding sections on nuclear power are complex, and we’ll dive into those issues in the next installment.

Illustration at top: “Bridge over the Mongahela River, Pittsburg, Penn.” from the Feb 21, 1857 edition of Ballou’s Pictorial, accessed via Wikimedia Commons


1Energy: A Human History, page 343

Speeding down a dead end road

Also published at Resilience.org.

Since the birth of car culture more than a century ago, lavish consumption of energy has not been a bug but a feature. That’s now a feature we can ill afford, as we attempt the difficult and urgent task of transition to renewable energies.

Notwithstanding all the superlatives lavished on Elon Musk by mass media, one of his great achievements has gone unsung: his ingeniously simple contribution to the Search for ExtraTerrestrial Intelligence (SETI).

I refer, of course, to his donation of a used automobile to the possible inhabitants of outer space. If there is intelligent life out there, they will recognize Musk’s Tesla Roadster as a typically energy-guzzling death trap of the genus known as “car”, and they’ll promptly return it to sender, COD.

Wait a minute, Musk’s Roadster is not a typical car, some might protest – it’s electric! True enough, but the Roadster, like its newer sibling the Model 3, was designed to seamlessly fit into and extend our current car culture. And one of the key features of car culture is that it was structured, from the beginning, to consume energy with careless abandon.

That giddy attitude to energy was understandable in the early days of the age of oil, but it will make our current transition to a clean-energy economy far more difficult if not impossible.

The invention of car culture

Americans did not invent the car, but they quickly came to dominate both car production and car consumption – and more than any other country, they put car culture at the centre of a way of life.

In his excellent book Consuming Power, David E. Nye notes that

“[By 1929] there was roughly one car for every five Americans, and an astonishing 78 percent of the cars in the world were in the United States. In France or Great Britain there was only one car for every 30 people, and in Germany only one for every 102. The automobile had become the central American consumer good and the engine of the American economy, stimulating a wide range of subsidiary industries and suppliers.”[1]

The pattern continued after World War II. “Americans drove 75 percent of the world’s automobiles in 1950,” Nye says. “Moreover, they wanted big automobiles.”[2]

The taste for big, fast cars was cultivated long before most Americans could hope to buy a car. Tom McCarthy’s Auto Mania shows how a small coterie of wealthy young men, hyped by the new mass media, captured public imagination with their expensive quest for speed – starting in 1900. That was the year when an heir to the Vanderbilt shipping fortune set tongues wagging with his powerful new toy.

“In June 1900, Vanderbilt bought a Daimler Phoenix, his first Daimler and his first racing car for which he had to pay the impressive price of 10,000 dollars. This car – nicknamed “White Ghost” and powered by a 23 hp engine which accelerated the car to a top speed of just under 100 km/h – was at last completely to Vanderbilt’s liking.”[3]

At least, the Daimler car was completely to Vanderbilt’s liking for two years. By 1902, he needed a more powerful car – a 60 hp Mors Z – to set a new speed record of 122 km.[4]

Other wealthy Americans got into the racing game too, and it was essential not just to go fast, but to go fast uphill. In each city with an expensive auto dealership, McCarthy notes, the steepest hill was the standard place for a test drive. “By 1904, when vehicles such as Vanderbilt’s 90-hp Mercedes proved too powerful for the annual hill climb at Eagle Rock, New Jersey, the hill climbs had made their point.”[5]

There was no practical use for this speed at the time – there were very few stretches of road smooth enough or straight enough to be driven at 50 km/hr, let alone 120 km/hr. But in America, unlike in Western Europe, the love of overpowered cars quickly became not just an elite hobby but a mass movement – with effects that remain strong today.

To suburbia and beyond

As one component of car culture, Americans developed a new way of living that was simultaneously industrialized and decentralized – with residences, office complexes and factories all moving out of central cities to the edges of urban areas.

As Nye explains, “This post-urban society was based on a historically anomalous situation: multiple sources of energy were all in oversupply.”[6]

Timothy Mitchell also takes up this theme. In the US in the first half of the twentieth century, he writes, oil gushed out of the ground so readily that it was hard for major oil companies to keep control of the market, and over-supply often threatened their profits. Regulation of domestic competitors was one prong in their strategy, while purposeful restrictions on the flow of abundant Middle East oil, prior to the 1950s, was another prong.

Another “method of preventing energy abundance,” Mitchell writes “involved the rapid construction of lifestyles in the United States organised around the consumption of extraordinary quantities of energy.”[7]

This American project began in the early 1900s and eventually became self-driving.

Overcoming performance anxiety

At the beginning of the 20th century, “The speeding millionaire sportsmen so effectively demonstrated and publicized the speed and power of the automobile that its introduction had an ‘in-your-face’ quality,” McCarthy writes. “Their behavior aroused strong emotions in other Americans, provoking a bitter reaction while also stoking the desire of millions to own an automobile, too.”[8]

Thus was set in motion a habit exhibited by Americans ever since: buying cars that can reach top speeds well in excess of the limitations of most driving conditions and most laws.

That would have been of little consequence, unless someone started building cars that could be sold to working-class Americans, and paying workers enough that they could afford cars. That was the role of Henry Ford. His Model T hit a sweet spot of size, speed, and affordability:

“Ford made the Model T inexpensive enough, well-made enough, and, most important, just large, powerful and fast enough that buyers could close most of the status gap between themselves and the wealthy without hypocritically aping them or leaving themselves open to ridicule for choosing a cheap, slow, poorly made car.”[9]

With its 26 horsepower engine and a top speed of 55–65 kilometers/hour, the Model T was more  than fast enough for the typically rough, rutted roads of rural America in 1910 (and 64% of the first million Model Ts went to farm and small town markets).[10]

The market for cars, of course, would have been very limited without the right legal and physical infrastructure, and government readily offered an essential helping hand. As Nye notes,

“Automobiles are not isolated objects; they are only the most salient parts of a complex energy-consuming system that includes production lines, roads, parking lots, oil wells, pipelines, service stations, and the redesign of urban spaces to accommodate drivers.”[11]

He further explains,

“As much as half of a city’s land area was dedicated to roads, driveways, parking lots, service stations, and so on. … This reshaping of the environment was not caused by the automobile itself. Americans were extremely active in defining their landscapes by means of zoning boards, park commissions, and city councils.”[12]

By mid-century, the US was systematically decommissioning public transit infrastructure – intra- and inter-city trains, streetcars and buses – in favor of the private car. This change happens to have been in the financial interests of both the car companies and the oil companies, the most powerful corporate interests in the country.

In energy consumption terms, the consequence was simple: “The largest growth in energy use began in the late 1930s and lasted until the early 1970s. In these 35 years energy consumption grew by 350 percent.”[13]

The comparison to comparably-industrialized western Europe is illuminating. By the early 1970s, “Compared with equally affluent Europeans, Americans used roughly twice as much energy per capita. Half of the difference was directly attributable to their transportation system ….”[14] In the first 70 years of the 20th century, western Europe had no significant domestic sources of oil, and thus no powerful corporate interests to make a case that it was in the “national interest” to consume as much energy as possible.

Car culture in the US, however, had acquired seemingly unstoppable momentum. In the early 1970s the US reached its peak of conventional oil production, and the country had already become dependent on steady supplies of imported oil. Yet the blip of the 1970s “energy crisis” made little difference to a high-energy way of life.

“Between 1969 (just before the crisis) and 1983 (just after), the number of miles driven by the average American household rose 29 percent. There were 39 percent more shopping trips, and the distances traveled on these trips increased by 20 percent.”[15]

Fighting for space

At the heart of car culture is a contradiction. The essential allure of speed can be reliably achieved only on sparsely travelled roads. But the increasing profits of oil companies and auto manufacturers alike depend on selling more cars to more people – and most people live and/or work in densely populated areas.

As noted by Nye, when half of a city’s land area was devoted to roads and parking lots, that pushed residents further apart and further from urban centres. By design, the new suburbs had insufficient density to support good public transit – which further locked suburbanites into car dependency. Traffic congestion, once a phenomenon of urban centres, became a regular rush-hour phenomenon on essential arteries 30, then 40, then 50 km or more from urban cores.

The stressed-out commuters on these routes might indeed be able to drive part way to work at high speed. But in spite of (because of?) the fact that they drive increasingly powerful vehicles, they also, on average, spend more and more time commuting.[16] So what good is that speed and power?

The promise of cars was that speed would conquer space. But the reality of car culture is that space triumphs over speed.

A specific example illustrates how this dynamic has played out across North America. Consider the collection of bridges and ramps now under construction at this site:

(Photos taken Friday March 16, 2018)

What vast complex of engineering wizardry is this? Actually, it’s an intersection. An  intersection of two rural highways, about 70 km from downtown Toronto, Ontario, Canada.[17] And nothing so complex as a four-way intersection, just a three-way T-junction.

Why is it deemed necessary to invest so much in one T-junction out here? Well, as North America’s busiest road,[18] Highway 401 regularly stalls to stop-and-go traffic anywhere along a 100-km stretch. And as the ripples of auto-dependent sprawl spread ever wider, there is a perceived need to build even more traffic-facilitating infrastructure. (Meanwhile, as in jurisdictions across North America, it’s almost impossible to find money to fix the crumbling auto infrastructure built decades or generations ago.)

In Ontario, the quest for congestion relief has taken the form of a new privately-operated toll road, taking a wide swing around the northern edges of the Toronto megalopolis. On Highway 401 a single careless driver can at any time cause a traffic-snarling accident that delays thousands of other drivers, often for hours. But on the new toll expressway, tolls are set so high that traffic nearly always moves at standard “highway speeds”.

And that’s a good thing, since at these far edges of exurbia, there are a high proportion of “extreme commuters”.[19] A lot of drivers at the new Highway 401/418 t-junction will be commuting a long distance, so it’s very important to them that they can drive these entry and exit ramps at full highway speed. (Too bad for those who can’t afford the tolls – they’ll have to stay on the low-class public highway. And even the toll-payers will at some point have to exit onto slow-moving, congested arterials.)

The method to Musk’s madness

When Elon Musk decided to sell electric cars to Americans, he followed a century-old playbook. First, put out an exclusive product endowed with marvelous powers of acceleration and speed. (Never mind that the buyers will be subject to the same speed limits and traffic congestion as everyone else – you can accelerate from 0 – 97 km in less than 4 seconds!) Then, having cleansed his electric-car brand of any taint of performance anxiety, he began marketing the later Model 3 at a price point that average American motorists could afford.

But an individual car is of no value. It only functions as part of an elaborate system of laws, roads, parking lots, and energy production and distribution – car culture, in other words. And car culture has proven to be a colossal waste of space, time and energy.

So if there are indeed intelligent aliens, they won’t be taken in by Musk’s unsolicited offer of a used car.

If there is extraterrestrial intelligence, that stray Roadster will be marked “Return to Sender.”

 

Top photo: composite by An Outside Chance from StarMan in Space video.


References

[1] David E. Nye, Consuming Power, MIT Press, 1997, page 178

[2] Nye, Consuming Power, page 205

[3] quoted from “Willie K.’s Cars #1: The 1900 23-HP Daimler “White Ghost

[4] Greg Wapling, “Land Speed Racing History

[5] Tom McCarthy, Auto Mania, Yale University Press, 2007, page 2

[6] Nye, Consuming Power, page 196

[7] Timothy Mitchell, Carbon Democracy, Verso, 2013, page 41

[8] McCarthy, Auto Mania, page 7

[9] McCarthy, Auto Mania, page 39

[10] McCarthy, Auto Mania, page 37

[11] Nye, Consuming Power, page 177

[12] Nye, Consuming Power, page 180

[13] Nye, Consuming Power, page 187

[14] Nye, Consuming Power, page 223

[15] Nye, Consuming Power, page 221

[16] Washington Post, February 22, 2017, “The American commute is worse today than it’s ever been

[17] While both Consuming Power and Auto Mania restrict their focuses to the United States, car culture in Canada closely mirrors that in the US. Not only does the manufacturing chain function as if there is no border, but the pattern of car-dependent suburban development is pretty much the same in Canada as in the US as well.

[18] From many sources, including Business Insider, Aug 29, 2012

[19] See chart “Extreme commutes are the fastest growing” in Washington Post, Feb 22, 2017

 

Guns, energy, and the coin of the realm

Also published at Resilience.org.

While US debt climbs to incomprehensible heights, US banking authorities continue to pump new money into the economy. How can they do it? David Graeber sees a  simple explanation:

There’s a reason why the wizard has such a strange capacity to create money out of nothing. Behind him, there’s a man with a gun.” (Debt: The First 5,000 Years, Melville House, 2013, pg 364)

In part one of this series, we looked at the extent of violence in the “American Century” – the period since World War II in which the US has been the number one superpower, and in which US garrisons have ringed the world. In part two we looked at the role of energy supplies in propelling the US to power, the rapid drawdown of energy supplies in the US post-WWII, and the more recent explosion of US debt.

In this concluding installment we’ll look at the links between military power and financial power.

A new set of financial institutions arose at the end of World War II, and for obvious reasons the US was ‘first among equals’ in setting the rules. Not only was the US in military occupation of Germany and Japan, but the US also had the financial capital to help shattered countries –whether on the war’s winning or losing sides – in reconstructing their infrastructures and restarting their economies.

The US was also able to offer military protection to many countries including previous mortal enemies. This meant that these countries could avoid large military outlays – but also that their elites were in no position to challenge US supremacy.

That being said, there were challenges both large and small in dozens of nations, particularly from the grass roots. The US exercised political power, both soft and hard, in attempts to influence the directions of scores of countries around the world. Planting of media reports, surreptitious aid to favoured electoral candidates, dirty tricks to discredit candidates seen as threatening, military aid and training to dictatorships and police forces who could put down movements for social justice, planning and helping to implement coups, and full-fledged military invasion – this range of intervention techniques resulted in hundreds of thousands, if not millions, of deaths. Cataloguing the bloody side of US “leadership of the free world” is the task taken on so ably by John Dower in The Violent American Century.

Dollars for oil

One of the rules of the game grew in importance with each passing decade. In Timothy Mitchell’s words,

Under the arrangements that governed the international oil trade, the commodity was sold in the currency not of the country where it was produced, nor of the place where it was consumed, but of the international companies that controlled production. ‘Sterling oil’, as it was known (principally oil from Iran), was traded in British pounds, but the bulk of global sales were in ‘dollar oil’.” (Carbon Democracy, Verso, 2013, pg 111)

As David Graeber’s Debt explains in detail, the ability to force people to acquire and use the ruler’s currency has, throughout history, been a key mechanism for extracting tribute from subject populations.

In today’s global economy, that is why the pricing of oil in dollars has been so important for the US. Again in Timothy Mitchell’s words:

Europe and other regions had to accumulate dollars, hold them and then return them to the United States in payment for oil. Inflation in the United States slowly eroded the value of the dollar, so that when these countries purchased oil, the dollars they used were worth less than their value when they acquired them. These seigniorage privileges, as they are called, enabled Washington to extract a tax from every other country in the world …. (Carbon Democracy, pg 120)

As Greg Grandin explains, the oil-US dollar relationship grew in importance even as OPEC countries were able to force big price increases:

With every rise in the price of oil, oil-importing countries had to borrow more to meet their energy needs. With every petrodollar placed in New York banks, the value of the US currency increased, and with it the value of the dollar-denominated debt that poor countries owed to those banks.” (“Down From The Mountain”, London Review of Books, June 19, 2017)

But the process did take on another important twist after US domestic oil production peaked and imports from Saudi Arabia soared in the 1970s. Although the oil trade continued to support the value of the US dollar, the US was now sending a lot more of those dollars to oil exporting countries. The Saudis, in particular, accumulated US dollars so fast there wasn’t a productive way for them to circulate these dollars back into the US by purchasing US-made goods. The burgeoning US exports of munitions provided a solution. Mitchell explains:

As the producer states gradually forced the major oil companies to share with them more of the profits from oil, increasing quantities of sterling and dollars flowed to the Middle East. To maintain the balance of payments and the viability of the international financial system, Britain and the United States needed a mechanism for these currency flows to be returned. … Arms were particularly suited to this task of financial recycling, for their acquisition was not limited by their usefulness. The dovetailing of the production of petroleum and the manufacture of arms made oil and militarism increasingly interdependent.” (Carbon Democracy, pg 155-156)

He adds, “The real value of US arms exports more than doubled between 1967 and 1975, with most of the new market in the Middle East.”

An F-15 Eagle aircraft of the Royal Saudi Air Force takes off during Operation Desert Shield, 1991. (Source: Wikimedia Commons)

Fast forward to today. Imported oil is a critical factor in the US economy, in spite of a supply blip from fracking. US industry leads the world in the export of weapons; the top three buyers, and five of the top ten buyers, are in the Middle East. (Source: CNN, May 25, 2016) Yet US arms sales are dwarfed by US military expenditures, which are roughly double in real terms what they were in the 1960s. (Source: Time, July 16, 2013)

Finally, US national debt, in 1983 dollars, is about 10 times as high as it was from 1950 to 1980. In other words the US government, along with its banking and military complexes, has been living far beyond its means (making bankruptcy king Donald Trump a fitting figurehead). (Source: Stephen Bloch, Adelphi University)

Yet the game goes on. As David Graeber sees it,

American imperial power is based on a debt that will never – can never – be repaid. Its national debt has become a promise, not just to its own people, but to the nations of the entire world, that everyone knows will not be kept.

At the same time, U.S. policy was to insist that those countries relying on U.S. treasury bonds as their reserve currency behaved in exactly the opposite way: observing tight money policies and scrupulously repaying their debts ….” (Debt, pg 367)

We’ll close with two speculations on how the “American century” may come to an end.

US supremacy rests on interrelated dominance in military power, financial power, and influence over fossil fuel energy markets. At present the US financial system can create ever larger sums of money, and the rest of the world may have no immediately preferable options than to continue buying US debt. But just as you can’t eat money, you can’t burn it in an electricity generator, a diesel truck, or a bomber flying sorties to a distant land. So no amount of financial wizardry will sustain the current outsized industrial economy or its military subsection, once prime fossil fuel sources have been tapped out.

On the other hand, suppose low-carbon renewable energy technologies improve so rapidly that they can replace fossil fuels within a few decades. This would be a momentous energy transition, and might also lead to a momentous transition in geopolitics.

In recent years, and especially under the Trump administration, the US is ceding renewable energy technology leadership to other countries, especially China. If many countries free themselves from fossil-fuel dependence, and they no longer need US dollars to purchase their energy needs, a pillar of US supremacy will fall.

Top photo: Commemorative silver dollar sold by the US Mint, 2012.

Energy And Civilization: a review

Also published at Resilience.org and BiophysEco.

If you were to find yourself huddled with a small group of people in a post-crash, post-internet world, hoping to recreate some of the comforts of civilization, you’d do well to have saved a printed copy of Vaclav Smil’s Energy and Civilization: A History.

Smil’s new 550-page magnum opus would help you understand why for most applications a draft horse is a more efficient engine than an ox – but only if you utilize an effective harness, which is well illustrated. He could help you decide whether building a canal or a hard-topped road would be a more productive use of your energies. When you were ready to build capstans or block-and-tackle mechanisms for accomplishing heavy tasks, his discussion and his illustrations would be invaluable.

But hold those thoughts of apocalypse for a moment. Smil’s book is not written as a doomer’s handbook, but as a thorough guide to the role of energy conversions in human history to date. Based on his 1994 book Energy in World History, the new book is about 60% longer and includes 40% more illustrations.

Though the initial chapters on prehistory are understandably brief, Smil lays the groundwork with his discussion of the dependency of all living organisms on their ability to acquire enough energy in usable forms.

The earliest humanoids had some distinct advantages and liabilities in this regard. Unlike other primates, humans evolved to walk on two feet all the time, not just occasionally. Ungainly though this “sequence of arrested falls” may be, “human walking costs about 75% less energy than both quadrupedal and bipedal walking in chimpanzees.” (Energy and Civilization, pg 22)

What to do with all that saved energy? Just think:

The human brain claims 20–25% of resting metabolic energy, compared to 8–10% in other primates and just 3–5% in other mammals.” (Energy and Civilization, pg 23)

In his discussion of the earliest agricultures, a recurring theme is brought forward: energy availability is always a limiting factor, but other social factors also come into play throughout history. In one sense, Smil explains, the move from foraging to farming was a step backwards:

Net energy returns of early farming were often inferior to those of earlier or concurrent foraging activities. Compared to foraging, early farming usually required higher human energy inputs – but it could support higher population densities and provide a more reliable food supply.” (Energy and Civilization, pg 42)

The higher population densities allowed a significant number of people to work at tasks not immediately connected to securing daily energy requirements. The result, over many millennia, was the development of new materials, tools and processes.

Smil gives succinct explanations of why the smelting of brass and bronze was less energy-intensive than production of pure copper. Likewise he illustrates why the iron age, with its much higher energy requirements, resulted in widespread deforestation, and iron production was necessarily very limited until humans learned to exploit coal deposits in the most recent centuries.

Cooking snails in a pot over an open fire. In Energy and Civilization, Smil covers topics as diverse as the importance of learning to use fire to supply the energy-rich foods humans need; the gradual deployment of better sails which allowed mariners to sail closer to the wind; and the huge boost in information consumption that occurred a century ago due to a sudden drop in the energy cost of printing. This file comes from Wellcome Images, a website operated by Wellcome Trust, a global charitable foundation based in the United Kingdom, via Wikimedia Commons.

Energy explosion

The past two hundred years of fossil-fuel-powered civilization takes up the biggest chunk of the book. But the effective use of fossil fuels had to be preceded by many centuries of development in metallurgy, chemistry, understanding of electromagnetism, and a wide array of associated technologies.

While making clear how drastically human civilizations have changed in the last several generations, Smil also takes care to point out that even the most recent energy transitions didn’t take place all at once.

While the railways were taking over long-distance shipments and travel, the horse-drawn transport of goods and people dominated in all rapidly growing cities of Europe and North America.” (Energy and Civilization, pg 185)

Likewise the switches from wood to coal or from coal to oil happened only with long overlaps:

The two common impressions – that the twentieth century was dominated by oil, much as the nineteenth century was dominated by coal – are both wrong: wood was the most important fuel before 1900 and, taken as a whole, the twentieth century was still dominated by coal. My best calculations show coal about 15% ahead of crude oil …” (Energy and Civilization, pg 275)

Smil draws an important lesson for the future from his careful examination of the past:

Every transition to a new form of energy supply has to be powered by the intensive deployment of existing energies and prime movers: the transition from wood to coal had to be energized by human muscles, coal combustion powered the development of oil, and … today’s solar photovoltaic cells and wind turbines are embodiments of fossil energies required to smelt the requisite metals, synthesize the needed plastics, and process other materials requiring high energy inputs.” (Energy and Civilization, pg 230)

A missing chapter

Energy and Civilization is a very ambitious book, covering a wide spread of history and science with clarity. But a significant omission is any discussion of the role of slavery or colonialism in the rise of western Europe.

Smil does note the extensive exploitation of slave energy in ancient construction works, and slave energy in rowing the war ships of the democratic cities in ancient Greece. He carefully calculates the power output needed for these projects, whether supplied by slaves, peasants, or animals.

In his look at recent European economies, Smil also notes the extensive use of physical and child labour that occurred simultaneously with the growth of fossil-fueled industry. For example, he describes the brutal work conditions endured by women and girls who carried coal up long ladders from Scottish coal mines, in the period before effective machinery was developed for this purpose.

But what of the 20 million or more slaves taken from Africa to work in the European colonies of the “New World”? Did the collected energies of all these unwilling participants play no notable role in the progress of European economies?

Likewise, vast quantities of resources in the Americas, including oil-rich marine mammals and old-growth forests, were exploited by the colonies for the benefit of European nations which had run short of these important energy commodities. Did this sudden influx of energy wealth play a role in European supremacy over the past few centuries? Attention to such questions would have made Energy and Civilization a more complete look at our history.

An uncertain future

Smil closes the book with a well-composed rumination on our current predicaments and the energy constraints on our future.

While the timing of transition is uncertain, Smil leaves little doubt that a shift away from fossil fuels is necessary, inevitable, and very difficult. Necessary, because fossil fuel consumption is rapidly destabilizing our climate. Inevitable, because fossil fuel reserves are being depleted and will not regenerate in any relevant timeframe. Difficult, both because our industrial economies are based on a steady growth in consumption, and because much of the global population still doesn’t have access to a sufficient quantity of energy to provide even the basic necessities for a healthy life.

The change, then, should be led by those who are now consuming quantities of energy far beyond the level where this consumption furthers human development.

Average per capita energy consumption and the human development index in 2010. Smil, Energy and Civilization, pg 363

 

Smil notes that energy consumption rises in correlation with the Human Development Index up to a point. But increases in energy use beyond, roughly the level of present-day Turkey or Italy, provide no significant boost in Human Development. Some of the ways we consume a lot of energy, he argues, are pointless, wasteful and ineffective.

In affluent countries, he concludes,

Growing energy use cannot be equated with effective adaptations and we should be able to stop and even to reverse that trend …. Indeed, high energy use by itself does not guarantee anything except greater environmental burdens.

Opportunities for a grand transition to less energy-intensive society can be found primarily among the world’s preeminent abusers of energy and materials in Western Europe, North America, and Japan. Many of these savings could be surprisingly easy to realize.” (Energy and Civilization, pg 439)

Smil’s book would indeed be a helpful post-crash guide – but it would be much better if we heed the lessons, and save the valuable aspects of civilization, before apocalypse overtakes us.

 

Top photo: Common factory produced brass olive oil lamp from Italy, c. late 19th century, adapted from photo on Wikimedia Commons.

The Carbon Code – imperfect answers to impossible questions

Also published at Resilience.org.

“How can we reconcile our desire to save the planet from the worst effects of climate change with our dependence on the systems that cause it? How can we demand that industry and governments reduce their pollution, when ultimately we are the ones buying the polluting products and contributing to the emissions that harm our shared biosphere?”

These thorny questions are at the heart of Brett Favaro’s new book The Carbon Code (Johns Hopkins University Press, 2017). While he  readily concedes there can be no perfect answers, his book provides a helpful framework for working towards the immediate, ongoing carbon emission reductions that most of us already know are necessary.

Favaro’s proposals may sound modest, but his carbon code could play an important role if it is widely adopted by individuals, by civil organizations – churches, labour unions, universities – and by governments.

As a marine biologist at Newfoundland’s Memorial University, Favaro is keenly aware of the urgency of the problem. “Conservation is a frankly devastating field to be in,” he writes. “Much of what we do deals in quantifying how many species are declining or going extinct  ….”

He recognizes that it is too late to prevent climate catastrophe, but that doesn’t lessen the impetus to action:

There’s no getting around the prospect of droughts and resource wars, and the creation of climate refugees is certain. But there’s a big difference between a world afflicted by 2-degree warming and one warmed by 3, 4, or even more degrees.”

In other words, we can act now to prevent climate chaos going from worse to worst.

The code of conduct that Favaro presents is designed to help us be conscious of the carbon impacts of our own lives, and work steadily toward the goal of a nearly-complete cessation of carbon emissions.

The carbon code of conduct consists of four “R” principles that must be applied to one’s carbon usage:

1. Reduce your use of carbon as much as possible.

2. Replace carbon-intensive activities with those that use less carbon to achieve the same outcome.

3. Refine the activity to get the most benefit for each unit of carbon emitted.

4. Finally, Rehabilitate the atmosphere by offsetting carbon usage.”

There’s a good bit of wiggle room in each of those four ’R’s, and Favaro presents that flexibility not as a bug but as a feature. “Codes of conduct are not the same thing as laws – laws are dichotomous, and you are either following them or you’re not,” he says. “Codes of conduct are interpretable and general and are designed to shape expectations.”

Street level

The bulk of the book is given to discussion of how we can apply the carbon code to home energy use, day-to-day transportation, a lower-carbon diet, and long distance travel.

There is a heavy emphasis on a transition to electric cars – an emphasis that I’d say is one of the book’s weaker points. For one thing, Favaro overstates the energy efficiency of electric vehicles.

EVs are far more efficient. Whereas only around 20% of the potential energy stored in a liter of gasoline actually goes to making an ICE [Internal Combustion Engine] car move, EVs convert about 60% of their stored energy into motion ….”

In a narrow sense this is true, but it ignores the conversion costs in common methods of producing the electricity that charges the batteries. A typical fossil-fueled generating plant operates in the range of 35% energy efficiency. So the actual efficiency of an electric vehicle is likely to be closer to 35% X 60%, or 21% – in other words, not significantly better than the internal combustion engine.

By the same token, if a large proportion of new renewable energy capacity over the next 15 years must be devoted to charging electric cars, it will be extremely challenging to simultaneously switch home heating, lighting and cooling processes away from fossil fuel reliance.

Yet if the principles of Favaro’s carbon code were followed, we would not only stop building internal combustion cars, we would also make the new electric cars smaller and lighter, provide strong incentives to reduce the number of miles they travel (especially miles with only one passenger), and rapidly improve bicycling networks and public transit facilities to get people out of cars for most of their ordinary transportation. To his credit, Favaro recognizes the importance of all these steps.

Flight paths

As a researcher invited to many international conferences, and a person who lives in Newfoundland but whose family is based in far-away British Columbia, Favaro has given a lot of thought to the conundrum of air travel. He notes that most of the readers of his book will be members of a particular global elite: the small percentage of the world’s population who board a plane more than a few times in their lives.

We members of that elite group have a disproportionate carbon footprint, and therefore we bear particular responsibility for carbon emission reductions.

The Air Transport Action Group, a UK-based industry association, estimated that the airline industry accounts for about 2% of global CO2 emissions. That may sound small, but given the tiny percentage of the world population that flies regularly, it represents a massive outlier in terms of carbon-intensive behaviors. In the United States, air travel is responsible for about 8% of the country’s emissions ….”

Favaro is keenly aware that if the Carbon Code were read as “never get on an airplane again for the rest of your life”, hardly anyone would adopt the code (and those few who did would be ostracized from professional activities and in many cases cut off from family). Yet the four principles of the Carbon Code can be very helpful in deciding when, where and how often to use the most carbon-intensive means of transportation.

Remember that ultimately all of humanity needs to mostly stop using fossil fuels to achieve climate stability. Therefore, just like with your personal travel, your default assumption should be that no flights are necessary, and then from there you make the case for each flight you take.”

The Carbon Code is a wise, carefully optimistic book. Let’s hope it is widely read and that individuals and organizations take the Carbon Code to heart.

 

Top photo: temporary parking garage in vacant lot in Manhattan, July 2013.

More than one way to fall off a cliff

Also published at Resilience.org.

Wonkometer Warning MH-225The “energy cliff” is a central concept in ecological economics, and it’s based on a very simple ratio. But for me this principle was a slippery thing to grasp, and I eventually realized some of the most common graphs used to illustrate the Energy Cliff were leaving me with a misleading mental image.

This column takes a closer look at Energy Return on Energy Invested (ERoEI, EROEI or simply EROI) and the Energy Cliff, concluding with the question of how and whether the Energy Cliff might be experienced as a historical phenomenon.

The Energy Cliff as a mathematical function

Below are two frequently used versions of the Energy Cliff graph, based on the pioneering work of Charles Hall. They illustrate the relationship between Energy Return on Energy Invested and the percentage of energy production that is “surplus”, i.e., not needed by the energy sector for its own work and therefore available for use by the rest of society.

Chart accessed via http://www.resilience.org/stories/2016-06-07/let-nature-be-nature

Chart accessed via http://www.resilience.org/stories/2016-06-07/let-nature-be-nature

Chart from Tim Morgan, Life After Growth, Kindle edition, locus 980

Chart from Tim Morgan, Life After Growth, Kindle edition, locus 980

In each case the EROEI is shown on the horizontal axis with lowest values at the right. The apparent suddenness of the drop-off in surplus energy depends on the relative scales of the axes and maximum value shown for EROEI, but in each case the drop-off becomes nearly perpendicular as EROEI falls below 10 – thus the name “Energy Cliff”.

Simple enough, eh? But after seeing this graph presented in several books and essays, I still found the concept hard to master. I kept asking myself, “How does that work again?” or “Why does energy supply drop off so suddenly?”

The problem, I realized, is that the impression these graphics leave in my mind is at odds with the intent. As these examples show, the “Energy for society” or “Profit energy” dominates the graphic visually, and the “Energy used to procure energy” or “Cost energy” seems like such a small sliver that it couldn’t possibly be that important. Mathematically naïve as that impression may have been, it nevertheless made it difficult for me to retain a clear understanding of the Energy Cliff.

The solution for me was to play with the graph until I felt I understood it clearly, using imagery that reinforced the understanding.

It was most helpful, I found, to present the graph not as an unbroken continuum between the two variables, but as a bar chart showing discrete values of Energy Return on Energy Invested: 1, 2, 3, 4, etc up to 50.

The Energy Cliff as a Bart Chart

Visualizing the numbers this way minimizes the tendency to see the surplus energy, or Net energy output, as one massive block. Just as importantly, it allowed me to easily focus on the relationship between specific values of Energy input and Net energy output.

For example, at the far right end of the graph is the ERoEI value 1. This corresponds to a bare break-even scenario. An oil well with this ERoEI would not be worth drilling: we would use up one barrel of oil to drill and operate the well, and it would spit out exactly one barrel in return, leaving us with no surplus energy for our efforts.

An ERoEI of 2 corresponds to a Net energy output of 50%. To return to our Proverbial Oil Corp., we burn one barrel of oil to drill and operate a well, and the well spits out two barrels, leaving us with a net gain of 1 barrel or 50% of the Total energy output.

Our oil wells with ERoEI of 3 give us 3 barrels total for every one we invest, for a net energy gain of 2 barrels or 66.6%, wells with ERoEI of 4 give us a net energy output equal to 75% of their total energy output, wells with ERoEI of 5 give us a net energy output equal to 80% of their total energy output, and so on.

We can also see clearly that the Energy input and Net energy output percentages change very slowly for ERoEI values above 20 – at which point Energy input is 5% and Net energy output is 95% of Total energy output).

There is another simple tweak to this chart that can vividly illustrate the sudden drop-off: animation. (And since most of us use supercomputers capable of guiding a moon mission for our morning reading, why not throw in some animation?)

The animated Energy Cliff – click chart to set in motion

The animated Energy Cliff – click chart to set in motion

By focusing attention on just a narrow range of ERoEI values at a time, this moving bar graph illustrates the fact that Net energy output changes slowly throughout most of the range, and then drops off suddenly and swiftly.

The animated graph relies on the element of time as a key facet of the presentation. That begs the question: can the Energy Cliff chart be read as a function of time?

The Energy Cliff as a historical phenomenon

It is easy to look at the Energy Cliff graphic as a chronological progression, given the convention of viewing timelines with past on the left and future on the right. That would be a mistake – there is no element of time in the chart – but it might be a useful mistake if made consciously.

It’s true that ERoEI rates have been declining slowly for the past 50 years, and many new energy technologies today have ERoEI rates of 10 or lower. And in fact, the Energy Cliff chart is sometimes presented as evidence that an impending energy crisis is mathematically inevitable. While that would be an unwarranted extrapolation from a graph of a simple exponential curve, it isn’t hard to cherry-pick data that graphs to a shape similar to the Energy Cliff.

Consider the following table of ERoEI rates over time.

Selected ERoEI rates over time

This table starts with EROEI rates before the industrial age, and finishes with rates that could plausibly represent the collapse of industrial society. When graphed these numbers show a drop-off much like the Energy Cliff, with the addition of a steep slope going up at the outset of industrial civilization. The values are roughly scaled chronologically, to represent the length of time during which very high EROEI prevailed – basically, the 20th century.

Net Energy over time - chart 1 copy

 

The numbers cherry-picked for this chart include, crucially, an EROEI for photovoltaic panels in Spain as calculated by Charles Hall and Pedro Prieto, which was the subject of spirited discussion recently on Resilience. At 2.45, this EROEI is far below the level needed to support a highly complex economy. If this number is correct and turns out to be representative of photovoltaics more generally, then the scenario suggested in the above chart is plausible. As high EROEI petroleum sources are depleted, we turn to bottom-of-the-barrel resources like tar sands, and then to solar panels which are even less energy-efficient. Complex industrial society soon collapses, and the vast majority of us must return to the fields.

For a very different picture, we could use the EROEI for solar panel installations presented by Ugo Bardi in Resilience, from a study by Bhandari et al. In this view, photovoltaics in Spain have an EROEI of 11–12, safely out of the drop-off zone of the Energy Cliff. In this scenario we’d have no need for last-ditch fossil fuels from tar sands, solar panels would produce enough surplus energy to create more solar panels and keep industrial society rolling cleanly along, and the Energy Cliff would be a mathematical function but not a historical reality.

Net Energy over time - chart 1 copy

 

These two charts are equally over-simplified, ignoring other renewable resource energy technologies with widely varying EROEI rates such as hydro-electric generation. It’s unknown how long we might stretch out the dwindling supply of high-EROEI fossil fuels, or whether there will be a collective decision to clamp down on carbon emissions and leave fossil fuels in the ground. And I’m unqualified to make any judgment on whether the Hall/Prieto or the Bhandari assessment of photovoltaics is most realistic.

In presenting these two different charts I merely want to illustrate that while the Energy Cliff graph of a mathematical function is simple and direct, extrapolating from this simple function to forecast historical trends is fraught with uncertainty.

Top graphic: “The Fool” in the Rider-Waite Tarot deck dances gayly at the edge of a precipice.