The high cost of speed

Also published on Resilience

Imagine that we used a really crazy method to establish speed limits. We could start by recording the speeds of all drivers on a given stretch of roadway. Then, without any clear evidence of what a safe speed might be, we might argue that the great majority of people drive too fast, and therefore the maximum legal speed will be set as that speed exceeded by 85 percent of drivers. Only the slowest 15 percent of drivers, in this scenario, would be considered to be driving within the legal limit.

If you have a passing familiarity with the legal framework of car culture, you will recognize the above as a simple inversion of the common 85th percentile rule used by traffic engineers throughout North America. Following this guideline, driver speeds are recorded, engineers determine the speed exceeded by only 15 per cent of the drivers, and that speed is deemed an appropriate speed limit for the given roadway. All the other drivers – 85 per cent – will then be driving within the speed limit.

Two recent books argue that the 85th percentile guideline is as arbitrary and misguided as it sounds. In There Are No Accidents, (Simon & Schuster, 2022; reviewed here last week), Jessie Singer summarizes the 85th percentile rule this way:

“Most speed limits are not based on physics or crash test expertise but simply the upper limit of what most amateur drivers feel is safe. A speed limit is the perceived safe speed of a road, not the actual risk of traveling that speed on that road.” (Singer, page 95)

Singer draws on the work of Eric Dumbaugh, who has a PhD in civil engineering and teaches urban planning at Florida Atlantic University. Dumbaugh has analyzed tens of thousands of traffic crashes in urban environments in the US. He concluded that the traffic engineering guidelines used for decades are based on false information, are often misapplied, and result in dangerous conditions on urban roadways. Absent physical evidence of what constitutes a safe driving speed, engineers simply assume that most drivers drive at a safe speed. Dumbaugh doesn’t mince words:

“Traffic engineering is a fraud discipline. It presumes knowledge on road safety that it doesn’t have and it educates people generation after generation on information that is incorrect.” (quoted by Singer, page 96)

The dangerous conditions on roadways have contributed to thirty thousand or more deaths in the US every year since 1946. But the engineers who design the roadways cannot be faulted, so long as they have applied the rules passed down to them in standard traffic engineering manuals.

Confessions of a Recovering Engineer was published by Wiley in 2021.

Similar themes are also a major focus in an excellent book by Charles Marohn Jr., Confessions of a Recovering Engineer (Wiley, 2021). Marohn was trained as a civil engineer, and for the first part of his career he worked as a traffic engineer designing what he saw at the time as “improvements” to roadways in small cities. Over time he began to question the ideas he had absorbed in his education and the guidelines that he followed in his engineering practice.

Marohn is now founder and president of Strong Towns. He has emerged as one of the most vociferous critics of the planning principles underlying American suburbia, and the design guidelines used to justify the arterial roads in those suburbs. He writes,

“The injuries and deaths, the destruction of wealth and stagnating of neighborhoods, the unfathomable backlog of maintenance costs with which most American cities struggle, are all a byproduct of the values at the heart of traffic engineering.” (Marohn, page 5)

These values are held so widely and deeply, Marohn says, that they are seldom questioned or even acknowledged. These values include :

“• Faster speeds are better than slower speeds..
• Access to distant locations by automobile is more important than access to local destinations by walking or biking. …
• At intersections, minimizing delay for automobile traffic is more important than minimizing delay for people walking or biking.” (Marohn, page 12)

Working from his own experience as a traffic engineer, Marohn explains the order in which issues are considered when designing a new or “improved” roadway. First the engineer decides on a “design speed” – a driving speed which the road should facilitate. Next to be established is the traffic volume – all the traffic typically traveling the route at present, plus all the additional traffic the engineer anticipates in the future. At that point the engineer will choose a design based on official guidelines for that design speed and that traffic volume; so long as the guidelines are followed, the design will be deemed “safe”. Finally, the engineer will estimate how much it will cost.

Marohn argues that the questions of whether traffic should move slow or fast, and whether all existing traffic should be accommodated or instead should be restricted, are not technical issues – they are questions of values, questions of public policy. Therefore, he says, issues of the desired traffic speed and desired traffic volume should be dealt with through the democratic process, with public input and with the decisions made by elected officials, not by engineering staff.

Image courtesy of Pixabay.

Some sins are forgiven

In the early days of car culture, traffic casualties happened at a far higher rate per passenger mile than they do in recent decades. Part of the improvement is due to changes in vehicle design – padded surfaces, seat belts, air bags. Part of the improvement can be attributed to what is called “forgiving design”, at least as applied on rural highways. Examples of forgiving design are gradually sloped embankments, which reduce the likelihood of rollovers if a driver veers off the road; wider lanes which lessen the chance of sideswiping; centre barriers which prevent head-on collisions; straightening of curves to improve sightlines; and removal of roadside obstacles such as large trees which an errant driver might hit.

On highways these forgiving design principles make sense, Marohn believes, but on urban arterial roads they are disastrous. He coined the word “stroad” for urban routes that combine the traffic complexity of streets with the high design speeds of inter-city roads. Stroads feature the wide lanes, cleared sightlines and levelized topography of highways, giving drivers the impression that higher speeds are safe. But stroads also have many intersections, turning vehicles, and access points for pedestrians. This means that the higher speeds are not safe, even for the drivers. And vulnerable road users – pedestrians and cyclists – often pay with their lives.

Most stroads should be converted into streets, Marohn says. “Instead of providing drivers with an illusion of safety, designers should ensure the drivers on a street feel uncomfortable when traveling at speeds that are unsafe.” (Marohn, page 43) To ensure that the mistakes of pedestrians and cyclists, and not just drivers, are forgiven, he advocates these guidelines: “Instead of widening lanes, we narrow them. Instead of smoothing curves, we tighten them. Instead of providing clear zones, we create edge friction. Instead of a design speed, we establish a target maximum travel speed.” (Marohn, page 41)

On a typical urban street, with stores, offices, schools, restaurants, and many people moving around outside of cars, that target maximum speed should be low: “Traffic needs to flow at a neighborhood speed (15 mph [24 kph] or less is optimum) to make a human habitat that is safe and productive.” (Marohn, page 56)

In recent years there has been a substantial rise in pedestrian and cyclist fatalities, even as motorist fatalities have continued a long downward trend. The rising death toll among vulnerable road users was particularly noticeable during and following the pandemic. In Marohn’s words we find a good explanation:

“Most [traffic fatalities] happen at nonpeak times and in noncongested areas. … the traffic fatality rate is much higher during periods of low congestion. This is … because the transportation system is designed to be really dangerous, and traffic congestion, along with the slow speeds that result, is masking just how dangerous it is.” (Marohn, 117)

With many businesses closed and many people working from home, there was much less traffic congestion. And without congestion acting as a brake, people drove faster and more pedestrians were killed. That wasn’t intentional, but it was predictable – it was no accident.

* * *

As Jessie Singer explains, we find an extensive matrix of causes that contributes to “accidents” when we look beyond the individual making a mistake. That matrix very often includes racial and economic inequality, which is why poor people suffer more in nearly every accident category than rich people do.

Both racial and economic factors come into play in the current wave of pedestrian deaths. In the major city closest to me, Toronto, pedestrian deaths occur disproportionately among racialized, poor, and elderly people. These deaths also occur most often on wide arterial roads – stroads – in older suburbs.

Marohn’s words again are enlightening: “as auto-oriented suburbs age and decline … they are becoming home to an increasing number of poor families, including many who do not own automobiles.” (Marohn, page 43) When these residents need to walk across four, five or six lane high-speed arterial roads, the predictable result is pedestrian deaths among the most vulnerable. An obvious, though politically difficult, solution is to redesign these roads to bring speeds down to a safe level.

The inequality that contributes to “accidents” is buttressed in most North American cities by an elaborate legal framework telling people where they are allowed to live and work. That legal framework is zoning. In the next installment of this discussion we’ll look at the history and consequences of zoning.


Image at top of page is in public domain under Creative Commons CC0, from pxhere.

Dangerous roads are no accident

Also published on Resilience

If you watch network television you can see auto companies spending a lot of money making our roads more dangerous. One slick ad after another glorifies massive cars and trucks as they careen around curves, bounce over bumps and potholes, and send up clouds of dust on always-open roads. The message is clear: it’s really cool to buy the biggest, most menacing vehicle you can afford, and drive it as aggressively as you can get away with.

It’s not that the car companies want to cause more serious injuries, but a simple logic is at work. The outsized profits from sales of big SUVs and trucks go to the bank accounts of car companies, while the hospital and funeral expenses of crash victims are charged to someone else.

There Are No Accidents, by Jessie Singer, is published by Simon & Schuster, February 2022

The way to reduce the horrific human cost of crashes, Jessie Singer explains, is simple: make the companies who produce dangerous vehicles accountable for their damages.

Singer’s book There Are No Accidents was spurred by the killing of one pedestrian by  motor vehicle, and traffic violence is one major subject she covers. Yet the book covers so many related subjects, and covers them so well, that one review cannot do the book justice.

What we call “accidents,” Singer says, usually result from a non-intentional act – a mistake – in a dangerous context. When we focus only on the person closest to the accident, who is often the person making the mistake, it’s easy to find one person to blame. But in so doing we typically overlook the more powerful people responsible for the dangerous conditions. These powerful people might be manufacturers of dangerous products, regulators who permit dangerous products or practices, or legislators who set up rules that make it difficult for accident victims to win redress. 

With this basic framework Singer looks at the history of workers’ compensation in the United States:

“By the end of the First World War, in most of the United States, when a worker had an accident, employers were legally required to provide compensation for medical care and lost work. For employers, this was a massive shift in their economic calculus. … The decline in work accidents was dramatic. Over the next two decades, deaths per hour worked would fall by two-thirds.” (all quotes in this article are from There Are No Accidents)

She also examinations the rise and fall in prescription and street drug overdoses, and the peculiar laws that conveniently overlook accidental discharge of firearms.

In all these disparate cases, a person making a mistake might pay with their life. But many social actors together set up the dangerous conditions. Economic inequality, racial prejudice and social stigmas act as multipliers of these conditions.

“Accidents are the predictable result of unequal power in every form – physical and systemic,” Singer writes. “Across the United States, all the places where a person is most likely to die by accident are poor. America’s safest corners are all wealthy.”

She also examines why “black people die in accidental fires at more than twice the rate of white people.” And why “Indigenous people are nearly three times as likely as white people to be accidentally killed by a driver while crossing the street.”

A sudden epidemic of traffic violence

About a century ago, a new and very dangerous condition began to kill people in rapidly growing numbers. “While the accidental deaths and injuries of workers generally declined from 1920 onward,” Singer writes, “accidental death in general rose – driven by huge numbers of deaths of car drivers, passengers, and pedestrians.”

Majority opinion did not, at the time, blame the children who played in streets, or “distracted walkers” who dared to stroll while engrossed in conversation. Outraged observers would occasionally pull a driver out of a car and beat him following the killing of a pedestrian, but there was also a clear recognition that the problem went beyond the actions of any individual driver. Thus citizens, editorialists, and city councils responded to the epidemic of traffic violence by calling for mandatory speed regulators in all cars to keep streets safe for people.

It took a concerted publicity campaign by the auto industry to shift the blame to “jaywalkers” or the occasional “nut behind the wheel”, and away from dangerous vehicles and dangerous traffic laws. Within a generation streets had become the precinct of drivers, with the ultimate price often paid by individual victims who still had to walk, because they couldn’t afford to drive dangerous vehicles themselves.

Eventually public demand and legislative requirements resulted in automakers introducing a wide variety of safety improvements to their cars. Notably, though, these improvements were focused almost solely on the safety of the people inside the cars.

And in the past twenty-five years there has been a large increase in the number of pedestrians killed by motorists: “Between 2009 and 2019, the U.S. Department of Transportation (DOT) reported a massive 51 percent rise in the number of pedestrians killed in the United States, from a little over 4,000 a year to more than 6,000.”

The increasing carnage was abetted by simple of facts of physics which both automakers and regulators had understood for decades:

“As long ago as 1975, the U.S. DOT itself figured out that three factors most determined whether or not a person was injured in a car accident: how much the vehicle weighed, how high it was off the ground, and how much higher its front end was compared to a pedestrian. By 1997, the department demonstrated that large vehicles such as SUVs and pickup trucks were significantly more likely to kill a pedestrian in a crash than smaller cars.” 

The automakers knew this, but they also knew they could make bigger profits by marketing bigger vehicles while escaping accountability for the greater numbers of pedestrians killed.

It didn’t have to be this way. Some countries took a different course. “Since 1997 in Europe and 2003 in Japan, vehicles have also been tested and rated for how safe they are for pedestrians, too, should the driver hit someone,” Singer writes. The National Highway Traffic Safety Administration proposed similar rules in the US but General Motors objected and the matter was dropped.

During the same period that US pedestrian fatalities were climbing steeply, “Pedestrian fatalities fell by more than a third in a decade in Europe and by more than half since 2000 in Japan.”

Love and rage

Eric James Ng was a middle-school math teacher, a fan of punk music, an activist, and he rode his bike everywhere, every day, through New York City.

Jessie Singer writes, “Eric was sixteen when I met him working at a summer camp. … Eric was magnetic, and I fell in love, right away. I still feel proud to say he loved me, too.

“Eric was killed at age twenty-two.”

He was killed while riding his bike on one of the busiest bike routes in the US, when a drunk driver mistook the paved bike lane for a car route and drove down that lane at high speed. The same type of “accidents” had happened before and would happen again, in spite of safety advocates urging that concrete bollards be installed at potential motor vehicle access points. But those life-saving bollards would not be installed until 2017, after a driver intentionally turned down onto the bike lane and intentionally hit people, killing eight people and injuring eleven others. Then, within a few days, new barricades were installed at dozens of intersections between the bicycle lane and motor vehicle driveways – exactly the type of barricades that would have saved Eric James Ng’s life.

Anger is a natural reaction to lives cut short and deaths that came far too soon, caused in significant part by dangerous conditions that were clearly known but tolerated due to lack of political will. Jessie Singer’s book would be a powerful and enlightening read even if it were a pure expression of anger, but it is so much more than that.

Eric James Ng, she writes, signed his emails with the phrase “love and rage.” That signature would make a fitting tag for her book too.

“In making recommendations after an accident,” she writes, “two goals are central: that we are guided by empathy and that we aim to repair harm.”

That empathy shines through every chapter of There Are No Accidents. Singer wants us to “Remember that the people who die most often by accident are often the most vulnerable – the youngest and the oldest, the most discriminated against and least wealthy – and start there. Start by concerning yourself with vulnerability.”

And if we truly want to change the dangerous conditions that make mistakes deadly, we need to look beyond the individual making a mistake or the individual victim. “Blame is a food chain. Always look to the top. Who has the most power? Who can have the greatest effect? The answer is very rarely the person closest to the accident ….”


In motor vehicle crashes, speed kills and higher speeds kill more. In the next installment we’ll consider how speed limits are set on roads and streets.

The toxic cloud called ‘Internet’

Also posted on Resilience.

The global electronics network is a sort of “bad news, good news” story in Jonathan Crary’s telling.

The bad news is that “the internet complex is the implacable engine of addiction, loneliness, false hopes, cruelty, psychosis, indebtedness, squandered life, the corrosion of memory, and social disintegration”; and that “the speed and ubiquity of digital networks maximize the incontestable priority of getting, having, coveting, resenting, envying; all of which furthers the deterioration of the world – a world operating without pause, without the possibility of renewal or recovery, choking on its heat and waste.”

The good news? The internet complex will soon collapse. 

Scorched Earth, by Jonathan Crary, published by Verso, April 2022.

Crary opens his forthcoming book Scorched Earth: Beyond the Digital Age to a Post-Capitalist World with these words: “If there is to be a livable and shared future on our planet, it will be a future offline, uncoupled from the world-destroying systems and operations of 24/7 capitalism.”

If you’re looking for a careful, thorough, let’s-consider-both-sides sort of discussion, this is not the book you want. “My goal here is not to present a nuanced theoretical analysis,”Crary writes.

Rather, he wants to jar people out of the widespread faith that because we’ve grown accustomed to the internet, and because we’ve allowed it to infiltrate nearly every hour of our lives, and because it may be hard to imagine a future without the internet, therefore the internet should and will endure.

Do some good things happen on and through the Internet? Of course – but Crary is not impressed by arguments that the internet is a liberating, empowering technology for progressive movements:

“Part of the optimistic reception of the internet was the expectation that it would be an indispensable organizing tool for non-mainstream political movements … [I]t should be remembered that broad-based radical movements and far larger mass mobilizations were achieved in the 1960s and early ’70s without any fetishization of the material means used for organizing.” (Scorched Earth, p. 11)

Likewise he comments that the anti-globalization rallies of the late 1990s happened before the pandemic of smart phones, and the huge protests against the US attack on Iraq in 2003 pre-dated the onset of so-called social media. Since then, he laments, the “stupefying” effects of Internet 2.0 have dissipated people’s energies into clicktivism, leaving less time and energy for the building of personal, in-the-flesh networks that might truly challenge the direction of capitalism.

References to material pollution are scattered throughout the brief book, but Crary focuses more of his attention on the pollution of minds, emotions and perceptions. Some parts of his critique are now shared by many, both within and outside the big tech complex. He calls attention, for example, to a pervasive erosion of self-esteem: “Each of us is demeaned by the veneration of statistics – followers, clicks, likes, hits, views, shares, dollars – that, fabricated or not, are on ongoing rebuke to one’s self-belief.” (Scorched Earth, p. 24)

Less widely understood is the immense effort put into data collection, including eye tracking, facilitated by the acquiescence of hundreds of millions of people who make their self-surveillance devices available to trackers at all times:

“We often assume that internet ‘surfing’ means the possibility of following random, uncharted visual itineraries …. From the standpoint of the bored individual, hours spent in this way may seem to be a desultory waste of time, but it is time occupied in a contemporary mode of informal work that produces value as marketable information for corporate and institutional interests. (Scorched Earth, p. 100)

The value exploited by corporate interests includes finely tuned means to convince people to buy things they don’t need, which neither they nor our ecosystems can afford.

Another section was particularly thought-provoking and sobering to me, as a nature photographer who publishes online. Crary explains that internet researchers collect reams of data on “what colors and combinations of colors and graphics are most or least eye-catching.” That information is in turn funneled back into UXD – User Experience Design – to make screen time as addictive as possible and unmediated experience of nature a fading memory:

“The ubiquity of electroluminescence has crippled our ability or even motivation to see, in any close or sustained way, the colors of physical reality. Habituation to the glare of digital displays has made our perception of color indifferent and insensitive to the delicate evanescence of living environments.” (Scorched Earth, p. 106)

Internet 2.0, in sum, turns us into willing accomplices of corporate consumerism, while undermining our self-esteem, sapping our abilities to appreciate the non-virtual world around us, and sucking up time we might otherwise devote to real community. Facebook, Twitter and their ilk have pulled off one of history’s spectacular cons – getting us to refer to their sociocidal enterprise as “social media” and getting us to believe it is “free”. 

Stockpile of mobile phones for recycling/disposal, September 2017.  Photo from Wikimedia Commons.

‘The Cloud is an ecological force’

In just 124 pages Crary bites off a lot – more, in fact, than he really tries to chew. From the outset, he portrays the internet complex as a final disastrous stage in global capitalism. He notes that “the internet’s financialization is intrinsically reliant on a house-of-cards world economy already tottering and threatened further by the plural impacts of planetary warming and infrastructure collapse.” (Scorched Earth, p. 7)

But what is the physical infrastructure of the internet complex? Crary doesn’t delve into that issue. A recently published article by Steven Gonzalez Monserrate, however, makes an illuminating companion piece to Crary’s book.

Entitled “The Cloud Is Material: Environmental Impacts of Computation and Data Storage”, Monserrate’s research is available here. MIT Press has also published a shorter article adapted from the full paper. Quotes cited here are taken from the full paper.

Monserrate’s central point is that, like a cl0ud of water molecules, “the Cloud of the digital is also relentlessly material”, and further that “the Cloud is not only material, but is also an ecological force”.

Crary refers to the capitalist industrial system, of which the internet complex is now one major component, as “choking on its heat and waste”. Monserrate helps us to quantify that heat and waste.

Discussing what data center technicians refer to as a “thermal runaway event”, Monserrate writes “The molecular frictions of digital industry … proliferate as unruly heat. … Heat is the waste production of computation, and if left unchecked, it becomes a foil to the workings of digital civilization.”

In most of the data centers that keep the Cloud afloat, he adds, “cooling accounts for greater than 40 percent of electricity usage.”

Can’t the network servers and their air conditioners be switched over to renewable energy in generally cool environments? It’s not so easy, Monserrate tells us. Because of network signal latency issues, large portions of the Cloud are located as close to financial and government centers as possible. The state of Virginia’s “data center alley,” he says, was “the site of 70 percent of the world’s internet traffic in 2019”. That degree of concentrated electricity consumption is difficult if not impossible to service without huge coal, gas or nuclear generators.

The energy demands go far beyond air conditioning:

“The data center is a Russian doll of redundancies: redundant power systems like diesel generators, redundant servers ready to take over computational processes should others become unexpectedly unavailable, and so forth. In some cases, only 6–12 percent of energy consumed is devoted to active computational processes. The remainder is allocated to cooling and maintaining chains upon chains of redundant fail-safes to prevent costly downtime.” (Monserrate, “The Cloud is Material”)

Keeping your cat videos available on demand around the world, keeping Amazon’s gazillion products available for your order at 3 a.m., keeping all of Netflix’ and Hulu’s videos ready for bingeing, and keeping this entire data stream transparent to both commercial and military surveillance – well, that results in a lot of coal and gas going up as carbon dioxide emissions.

One result: “the Cloud now has a greater carbon footprint than the airline industry.”

Like the cell phones that Apple, Google and Samsung encourage you to replace every two or three years, every physical component of the internet complex has to be mined, refined, chemically transformed, assembled, packaged and shipped, before it soon becomes outmoded. Monserrate cites a Greenpeace study estimating that “less than 16 percent of the tons of e-waste generated annually is recycled.” And that recycling is often done by the lowest-paid workforces in the world, in enterprises that don’t respect the health of the workforce or the environment.

“The refuse of the digital is ecologically transformative,” Monserrate concludes.

Life without Internet

So is the Internet destined to be but one brief blip in human history? The answer seems clear to Crary – the internet will collapse along with the industrial complex that supports it:

“The internet complex, now compounded by the Internet of Things, struggles to conceal its fatal dependence on the rapidly deteriorating built world of industrial capitalism. Contrary to all the grand proposals, there never will be significant restoration or replacement of all the now broken infrastructure elements put in place during the twentieth century.” (Scorched Earth, p. 63)

Personally I am cautious about making such firm predictions, though I don’t see how the internet will persist long in its current form. Total disappearance is just one potential outcome, however. The current internet industrial complex, as Monserrate describes, includes a vast amount of redundancy, and perhaps that will make it possible to transition to a still-useful internet with only a fraction of the energy and material throughput.

In a transformed economic system, without the built-in impulsion to sell hardware and software “upgrades” to consumers on an annual basis, and without the created “need” to have every video snippet available anywhere anytime, and without the motive to maintain a vast surveillance and behavior modification apparatus – perhaps a future civilization could benefit from many of the significant benefits of the internet without paying a soul- and ecosystem-crushing price. (On this subject, see for example the research by Kris De Decker in “How to Build a Low-Tech Internet”.)

But if we don’t redirect our global economic system, and fast, the whole toxic cloud may crash whether we like it or not. And perhaps, on balance, that will be a very good thing.

“If we’re fortunate,” Crary dares to hope, “a short-lived digital age will have been overtaken by a hybrid material culture based on both old and new ways of living and subsisting cooperatively.”


Photo at top of page: A young man burning electrical wires to recover copper at Agbogbloshie, Ghana, as another metal scrap worker arrives with more wires to be burned. September 2019. Photo by Muntaka Chasant, licensed via Creative Commons, accessed through Wikimedia Commons.

The uncertain prospects for us multicell types

Also posted on Resilience.

You and I and termites have a lot in common. For one thing, we are all dependent on microbes to stay alive (though few microbes depend on us).

A Natural History of the Future, by Rob Dunn, Basic Books, November 2021

Besides, humans and termites, along with every other multi-celled living creature, belong to just one small branch on the evolutionary tree of life. All of us multi-celled types together – be we plants, insects, fish, birds or apes – are barely a rounding error in the catalogue of life, in which the overwhelming majority of varieties of life are bacterial.

These perspective-correcting points loom large in Rob Dunn’s A Natural History of the Future (Basic Books). If it were merely a compendium of curiosities the book would still make a really good read, given Dunn’s ability to highlight recent work by dozens of other researchers combined with his gift for clear exposition. But in his discussion of key laws of ecology Dunn has a practical purpose in mind: he wants to give us a better chance at surviving this new age of instability which we call the anthropocene.

In spite of all our clever technologies, he argues, human life is and always will be limited by basic principals of ecology. These laws of ecology are particularly important as we leave a millennia-long period of relative climate stability and begin to cope with the climate chaos we have created.

Climate change sometimes recedes into the background in A Natural History of the Future … for a few pages. Dunn takes us billions of years back into evolutionary history, and he spends much of the book reviewing events of recent decades, but his aim is to elucidate our near future. And in the near future no challenges loom quite so large as climate change.

In the big picture, think small

At the outset Dunn helps us understand the scope of our ignorance. When Western scientists such as Linnæus started to classify species, they focused mostly on species which were relatively large, beautiful, or directly useful to us. These scientists also tended to work in northern Europe, an area with very little biological diversity relative to much of the world.

By the second half of the twentieth century this limited world view was being challenged from within academic science. Once they paid close attention, ecologists realized that species of insects vastly outnumber all the species of larger animals. As Terry Erwin wrote in 1982, “there might be 30 million tropical arthropod species.”

Other scientists were exploring the bewildering variety of fungi. Still others, aided by new techniques in genetics, got a glimpse of the staggering diversity of bacteria. A study published in the National Academy of Sciences in 2016 “estimated that there might be a trillion kinds of bacteria on Earth.”

Dunn summarizes the perspective shift in these words:

“By the time I was a graduate student, Erwin’s estimate had led scientists to imagine that most species were insects. For a while, it seemed as though fungi might be the big story. Now it seems as though, to a first approximation, every species on Earth is a bacterial species.” (A Natural History of the Future, page 28)


‘A Novel Representation of the Tree of Life’ (from Nature, 11 April 2016), shows the predominance of bacteria in the tree of life. Dunn includes a simplified version of the same graphic, and he writes: “All species with cells with nuclei are part of the Eukaryotes, represented in the lower right-hand section of the tree. … The Opisthokonta, one small part of the Eukaryote branch, is the branch that includes animals and fungi. Animals, if we zero in, are just one slender branch of the Opisthokonta. … [V]ertebrates do not get a special branch on the tree. The vertebrates are a small bud. The mammals are a cell in that bud. Humanity is, to continue the metaphor, something less than a cell.” (Graphic by Laura A. Hug, Brett J. Baker, Karthik Anantharaman, Christopher T. Brown, Alexander J. Probst, Cindy J. Castelle, Cristina N. Butterfield, Alex W. Hernsdorf, Yuki Amano, Kotaro Ise, Yohey Suzuki, Natasha Dudek, David A. Relman, Kari M. Finstad, Ronald Amundson, Brian C. Thomas and Jillian F. Banfield; via Wikimedia Commons.)


For good or ill, our smaller companions on earth have always played large roles in natural history. Termites, for example, were just another type of cockroach until they acquired the gut microbes that allow them to digest wood. We humans “are probably dependent on more species than any other species ever to exist” – including, to mention just a few, all the insects that pollinate all the plants we eat, and all the gut microbes that help us to digest that food.

While we can’t hope to fully understand or even name all the varieties of life, we can, Dunn says, understand basic rules that influence how new species evolve, how existing species go extinct, and how species interact with each other and with their changing ecosystems. If we respect those rules we lessen the chances that we will threaten our own chances of survival any further.

Islands and corridors

The book covers too many subjects to adequately summarize in one review, but consider two simple concepts. A discussion of island ecosystems highlights the principle that bigger islands tend to have more species. It is equally true that ecosystems with greater diversity of species are more stable through time.

“Islands” can refer to bodies of land surrounding by water – but also to isolated specific habitats surrounded by very different ecosystems. One effect of our own rapidly climbing population and the explosive growth of urban habitats, Dunn explains, is the fragmentation of many ecosystem into an array of tiny islands – small areas of forest or plots of prairie – surrounded by cities or monoculture farms. These fragments – islands – are often too small to support a diverse number of species, and too widely separated from similar fragments for species to move between the islands. The result is that these islands are all highly vulnerable to significant or rapid change – including the change we are now enforcing by our rapid release of greenhouse gases.

The ecology of corridors is attracting wide interest, because it is readily evident that many species will need to move to survive. In some places and for some species, corridors that we carefully preserve or recreate may help plants and animals move along with the warming climate.

Corridor biology can also have unintended and unwanted consequences, Dunn points out. Not only are we building megacities, but these megacities are sometimes merging. In the nearly unbroken urban area from Washington DC to New York City,

“We have already created a corridor, a perfect and immense corridor, but it is not a corridor for rare butterflies, jaguars, and plants. It is, instead, a corridor for urban species, species able to move along roads and live amid buildings, species that live not in green spaces but in gray ones.” (page 72)

A corridor, in other words, for pigeons, Norway rats, and less-beloved species including some of the parasites that plague people in warmer cities, and which will move north with ease as the climate heats up.

Diversity and stability

The global market economy has pumped hundreds of billions of tonnes of carbon dioxide into the atmosphere, and it has appropriated most of the world’s arable land for monocultures of a small number of staple crops. Taken singly each of these transformations would have destructive effects – but in tandem they put us in a real heap of trouble:

“We have built a food system that thrives when variability is minimized. But … we have also altered Earth’s climate in such a way as to make it much more variable and unpredictable.” (page 150)

The diversity-stability law implies that “Regions with a greater diversity of crops have the potential to have more stable crop yield from year to year and hence less risk of crop shortages” (page 11). Dunn cites analysis by Delphine Renard, who compared nationwide yields from 91 countries, for 176 crop species, over a 50-year period. The yields were summed in terms of calories, so that agricultural yields from corn to potatoes to peaches could be compared in a common unit of measurement. The result: Countries with high crop diversity experienced 25 percent overall yield declines an average of once in 125 years. Countries with the lowest crop diversity experienced 25 percent declines an average of once in eight years.

The coming century will be more challenging than the past century, Dunn says. It would be easier, though still difficult, if we could expect steadily rising temperatures in every area. That is not, of course, how climate change is working. Instead, the general heating trend will be punctuated at unpredictable intervals by damaging cold spells. Dry areas are likely to get dryer, but with occasional damaging downpours, while wet areas get wetter but experience occasional droughts.

Considering climate physics and ecological principles together, then, it is essential that we begin the re-diversification of agriculture.

Other topics that Dunn covers include the dangers in indiscriminate use of biocidal chemicals – be they antibacterial hand creams routinely applied, antibiotics routinely added to animal feed, or herbicides sprayed on nearly every major crop field in whole countries. He discusses why some types of avian intelligence will help birds cope with climate change, while other kinds of birds will be at a terrible disadvantage. He explains that in spite of our advanced technologies, the dense concentrations of humans occupy the same geographic areas today that we tended to favor 6,000 years ago; this is a subject I hope to return to in a coming blog post.

The final chapter focuses once again on bacteria. We humans will die off some day, Dunn says, because no species last forever. If we mess up in spectacular fashion, millions of other multi-celled species will go extinct along with us – mammals, birds, fish, insects, trees and flowers. But uncounted millions of unicellular species – teeming masses of bacteria that thrive in scalding heat, concentrated acids, or intense radiation – will survive any calamities we are able to bring on.

A Natural History of the Future is a big book in its scope and in the degree of detail. Throughout, Dunn makes things clear for non-specialist readers. Highly recommended.


Photo at top of page: A Mastotermes darwiniensis worker termite. The giant northern termite is a large endemic species which lives in colonies in trees and logs in the tropical areas of Australia. Photo courtesy of Commonwealth Scientific and Industrial Research Organisation (CSIRO), via Wikimedia Commons.

For better or worse, we adapt

Also posted on Resilience.

Affluent owners of seashore properties buy up homes a safer distance from the coast – pricing poor residents out of communities they have called home for generations. Rural residents set up agro-forestry enclaves on mountain slopes, capturing some of the increasingly unpredictable rainfall. Relatively wealthy nations build and guard fences at their borders to keep climate refugees away. Water bombers fly hundreds of sorties from lakes and reservoirs to fires raging in drought-ravaged forests.

All these climate change adaptations have been happening for years now. But among the hundreds of examples of climate change adaption one could identify, some responses simultaneously work against climate change mitigation, and many work against climate justice – they are what Morgan Phillips terms “climate change maladaptations.”

He wants environmentalists to think more clearly about adaptation strategies so that we can get on with the urgent work of what he calls great adaptations. That’s the point of his recent book Great Adaptations: In the shadow of a climate crisis. (Arkbound, Sept 2021)

When he joined The Glacier Trust in support of adaptation projects in Nepal, Phillips learned that

“Lives in the Himalayan villages I have visited are on a knife edge. Landslides, floods, glacial retreat, drought, fire, air pollution, and insect pests are haunting the future of an already fragile country; it is on the brink of being turned upside down. … I knew that climate change needed to be mitigated, but the need to adapt to it is far greater than I’d ever imagined.” (Great Adaptations (GA), page 3)

Yet in 2020 The Glacier Trust “found that only 0.82% of articles written by the UK’s five biggest environmental organisations are focused on climate change adaptation.” (GA p 197)

There are valid reasons why, historically, environmental organizations preferred to focus on climate change mitigation rather than adaptation.1 If global economic elites had put serious work into mitigation 30 years ago, instead of lip service, we might not be in a position today where climate change adaption is, and will remain for generations, an urgent task.

In choosing to focus his book on adaptation, Phillips makes it clear that mitigation remains as essential as ever. We need to begin creative and effective adaptation projects around the world, because climate-induced crises are already happening. At the same time, without urgent mitigation work – primarily through a rapid curtailment of fossil fuel use – the climate crises will become so severe that effective adaptation in many areas will be impossible.

His book is wide-ranging but clearly written and free of obfuscating jargon. It deserves a wide audience because his message is so important:

“In the same spirit in which we call for a just transition to a low-carbon society, we must also call for just adaptation to climate change. They are two sides of the same coin.” (GA p 15)

Some of the adaptations Phillips discusses are as particular as changing one farming practice on one particular landscape. Others span the globe and involve changes to the international economic order, accepted definitions of universal human rights, or both. One great adaptation – forgiveness of debt – could be an effective step towards international justice whether or not it is enacted with climate change in mind:

“Cancellation of historical and unfair debts would save countries millions of dollars every year. This money could be put to use on climate change mitigation and adaptation projects.” (GA p 14)

Migration is another obvious adaptation to the climate crisis. Current citizenship law and current property law result in a crushing burden being paid by those who typically have done the least to cause the climate crisis. To achieve justice in climate adaptation, “we all also need to be free to find refuge and a new life in a country of our choosing if we want to – or are forced to – migrate because of climate change.” (GA p 14)

In some regions permanent migration might be neither desired nor necessary, but seasonal migration may be appropriate. Phillips notes that migratory lifestyles have been freely chosen by many cultures throughout history and we should open our minds – and our legal structures – to facilitate this adaptation strategy.

It should be clear that effective and just adaptation will call into question the deepest foundations of global political economy. Phillips harbors no illusions about the scale and the difficulty of the challenge. “My feeling,” he writes “is that to have any hope of avoiding catastrophic climate change, ‘Western’ civilisation needs to be disassembled with great urgency and great care.” (GA p 149)

Citing Rupert Read, he considers the possibility of “a successor civilisation after some kind of collapse [of ‘Western’ civilisation]”. As an example of such a many-faceted response to climate crisis, Phillips discusses the “Make Rojava Green Again” movement in the region Western media refer to as Kurdistan. In his description,

“The ‘Make Rojava Green Again’ movement has strong ecological, multicultural, democratic, and feminist principles. It is based on a political system of democratic confederalism, where power is devolved to as local a level as possible ….” (GA p 167)

The Rojavan example has been inspiring to people around the world, not only because of its egalitarian and ecological principles, but also because the movement has become a decisive force in the wake of the global proxy war in Syria and the failed US occupation of Iraq. The response to this civilizational collapse has been, not an attempt to return to business as usual, but a new way of life: “‘Make Rojava Green Again’, and other ‘Phoenix’ like it, are so important because they help us to imagine different kinds of future. Rojavan’s are willing to challenge the value structures that underpin ‘Western’ civilisation.” (GA p 170)

The adaptation examples Phillips considers come from rich countries, poor countries, megacities, and sparsely populated rural areas. They are equally diverse in their effects: some adaptations reinforce inequalities; some adaptations fuel additional global heating; some adaptations help mitigate climate change while supporting global justice; many adaptations are neither wholly positive nor wholly negative.

But simply ignoring adaptation is a very risky strategy, “especially if the responsibility for adaptation is left in the hands of central Governments, large NGOs, and big businesses that are, by nature, resistant to anything truly transformative.” (GA p 197)

With this book, Phillips writes, “The Glacier Trust is trying to frame adaptation as a positive and transformative process grounded in the principles of social justice and ecological enhancement.” (GA p 204)

We must adapt to climate changes in future, and we are adapting already. But if the adaptations are merely ad hoc and not thoughtfully considered, they are more likely to be maladaptations than great adaptations.


1 Paul Cox and Stan Cox provide an excellent historical overview of the mitigation/adaptation divide in their chapter “Adaptation and Mitigation Amid the Consequences of Failure”. (In Energy Transition and Economic Sufficiency, Post Carbon Institute, 2021.) They conclude that “Societies once could choose between changing direction or dealing with climatic disaster; now it is necessary to do both at once.”


Image at top: Grounding of John B. Caddell (tanker ship) by Hurricane Sandy, November 2012 in New York City. Photo by Jim Henderson, on Wikimedia Common.

Around the world in a shopping cart

Also posted on Resilience.

Christopher Mims had just embarked on his study of the global retail supply chain when the Covid-19 pandemic broke out. Quickly, he found, affluent consumers redoubled their efforts at the very activity Mims was investigating:

“Confronted by the stark reality of their powerlessness to do anything else and primed by a lifetime of consumerism into thinking the answer to the existential dread at the core of their being is to buy more stuff, Americans, along with everyone else on Earth with the means to do so, will go shopping.” (page 6-7; all quotes here are from Arriving Today)

Arriving Today is published by Harper Collins, September 2021.

More than ever, shopping during the pandemic meant shopping online. That added complications to the global logistics systems Mims was studying, and added another strand to the story he weaves in Arriving Today: From Factory to Front Door – Why Everything Has Changed About How and What We Buy. (Harper Collins, 2021)

The book traces the movements of a single, typical online purchase – a USB charger – from the time it leaves a factory in Vietnam until it’s delivered to a buyer in the US. Sounds simple enough – but it’s an immensely complicated story, which Sims tells very well.

In the process he dives into the history and present of containerized shipping; working conditions for sailors, longshoremen, truckers, and warehouse employees; why items are scattered around a “fulfillment center” in the same way data files are scattered around on a computer drive; the great difficulty in teaching a robot to pick up soft packages wrapped in plastic film; and why no supercomputer can calculate the single best route for a UPS driver to take in making a hundred or more deliveries in the course of an average day.

How long can this system continue to swallow more resources, more small businesses, more lives? If there is a major weakness to Sims’ treatment, it is in suggesting that the online retail juggernaut must, inevitably, continue to grow indefinitely.

A key issue that is absent from the book is the energy cost of the global supply chain. Sims devotes a great deal of attention, however, to the brutal working conditions and relentless exploitation of working people in many segments of the delivery system. At the very least, this evidence should lead one to wonder when a tipping point will be reached. When, for example, might workers or voters be driven to organize an effective counterforce to insatiably acquisitive billionaires like Jeff Bezos? When, more grimly, might the portion of the population with discretionary income become so small they can no longer prop up the consumer economy?

“Taylorism – the dominant ideology of the modern world”

The unifying thread in Sims’ presentation is this: “Taylorism” – the early 20th-century management practice of breaking down factory work into discrete movements that can be “rationalized” for greater company profits – has now turned many more sectors into assembly lines. Today, Sims writes, “the walls of the factory have dissolved. Every day, more and more of what we do, how we consume, even how we think, has become part of the factory system.”

The factory system, in Sims’ telling, now stretches across oceans and across continents. It finds clear expression in facilities that are owned or controlled by the management practices of Amazon. In Amazon’s sorting, packing and shipping facilities, what makes the company “particularly Darwinian” is the floating rate that constantly and coldly passes judgment on employees.

With warehouse work divided into discrete, measurable and countable tasks, management algorithms constantly track the number of operations completed by each worker. Those who perform in the bottom 25% are routinely fired and replaced. As a result, Sims writes, “most workers in an Amazon warehouse are constantly in danger of losing their jobs, and they know it.”

There is no paid sick leave, so cash-strapped employees often have no choice but to work even when injured or sick. (Free coffee and free Ibuprofen are made available to help them work through fatigue or pain.) But if ill health causes a drop in performance they won’t “make the rate” and they will be fired. Those who are exceptionally physically fit, and who seldom get sick, are still likely to be worn down by the relentless pace eventually.

To replace workers, Sims says, “the company has all but abandoned interviewing new hires.” Screening and training new employees can be expensive processes, but they are processes in which Amazon invests little. A constant cohort of new employees are dropped into the stream and they simply sink or swim:

“Everyone I talked to about their first months at Amazon said that the attrition rate they witnessed was greater than 50 percent in the first two months.” (page 209)

Some companies might regard high employee turnover as a huge liability. For Amazon, Sims explains, high turnover is not a bug, it’s a feature. The turnover allows the company “to grab only the most able-bodied members of America’s workforce” (page 235) and to constantly replace them with new employees who haven’t yet gotten sick or injured.

If that weren’t enough, the high turnover benefits Amazon in another important way: “it makes it almost impossible for workers to unionize.” (page 210) 

UPS trucks in Manhattan, 2010. Photo by Jeremy Vandel, licensed under Creative Commons Attribution-Non Commercial license.

The last mile

“[Amazon’s] relentless measurement, drive for efficiency, loose hiring standards, and moving targets for hourly rates are the perfect system for ingesting as many people as possible and discarding all but the most physically fit.” (page 235-236)

As Amazon’s share of retail shopping grows and it Taylorizes its warehousing, there is another big link in the supply chain in which the company sees opportunity to slash worker compensation and boost corporate profits.

Until recently transportation of packages between sorting centers, and along the “last mile” to customers’ doorsteps, has been controlled by a wide array of trucking companies. One of the biggest of these companies, UPS, is a throwback to a day when most truck drivers were unionized, well paid, and received benefits like paid sick days, company health insurance, and pensions.

A driver for UPS is well trained, often very experienced, and learns to “go from stopping their truck to getting a package out of it in nine seconds.” (page 271) But a full-time driver for UPS also makes more than $30/hour plus benefits. Jeff Bezos, who increased his wealth by $65 billion in the first year of the pandemic, covets the paycheque of that UPS driver, along with the paycheque of anyone else in the supply chain whose job, if it can’t be robotized, could be turned over to a minimum-wage gig worker, aka “independent contractor”.

UPS and FedEx, Sims writes, together have 80 per cent of the US package delivery business. FedEx, along with nearly all other parcel-delivery companies, pay roughly minimum wage, with minimal benefits. Care to guess which company Amazon would like to emulate?

Indeed, as of 2018 Amazon itself has roared into the delivery business. “By the middle of 2020s,” Sims writes, “Amazon Logistics … is projected to take the number one spot from UPS.” (page 252)

Citing the research of Brandeis University professor David Weil, Sims concludes:

“Everything about Amazon’s decision to hire delivery companies that hire drivers, rather than hiring those drivers directly, is about pushing down wages, eliminating workplace protections, evading liability in the event of accidents, avoiding workplace litigation, eliminating the expense of benefits, and eliminating the possibility of drivers ever unionizing ….” (page 278)

In the last sentence of his book, Sims cites the 100 billion packages per year now shipped through the online retail supply chain, and he exhorts us to “imagine a future in which that number has doubled or tripled; imagine a future in which it is the way virtually every finished object gets anywhere.” (page 288)

Let’s imagine: Factory jobs in every sector will have moved to the lowest-wage countries with adequate industrial capabilities. Formerly well-paid factory workers in Rust Belt towns will compete for Amazon warehouse jobs that offer them minimum wage, for as many months as their bodies can sustain the constantly accelerating pace of simple repetitive tasks. Robots will have replaced human wage-earners wherever possible. And last mile delivery drivers will take orders from Amazon but receive their meager paycheques from other companies whose names most of us will never see.

In that paradise of capitalist productivity, who besides Jeff Bezos will still have enough income to fill their shopping carts?


Image at top: Your Cart is Full, composed by Bart Hawkins Kreps from public domain graphics.

‘This is a key conversation to have.’

This afternoon Post Carbon Institute announced the release of the new book Energy Transition and Economic Sufficiency. That brings to fruition a project more than two-and-a-half years in the making.

Cover of Energy Transition and Economic Sufficiency

In May 2019, I received an email from Clifford Cobb, editor of the American Journal of Economics and Sociology. He asked if I would consider serving as Guest Editor for an issue of the Journal, addressing “problems of transition to a world of climate instability and rising energy prices.” I said “yes” – and then, month by month, learned how difficult it can be to assemble a book-length collection of essays. In July, 2020, this was published by Wiley and made accessible to academic readers around the world.

It had always been a goal, however, to also release this collection as a printed volume, for the general public, at an accessible price. With the help of the Post Carbon Institute that plan is now realized. On their website you can download the book’s Introduction –which sets the context and gives an overview of each chapter – at no cost; download the entire book in pdf format for only $9.99US; or find online retailers around the world to buy the print edition of the book.

Advance praise for Energy Transition and Economic Sufficiency:

“Energy descent is crucial to stopping climate and ecological breakdown. This is a key conversation to have.” – Peter Kalmus, climate scientist, author of Being The Change

“This lively and insightful collection is highly significant for identifying key trends in transitioning to low-energy futures.” – Anitra Nelson, author of Small is Necessary

“The contributors to this volume have done us a tremendous service.” – Richard Heinberg, Senior Fellow, Post Carbon Institute, author of Power: Limits and Prospects for Human Survival

“For those already applying permaculture in their lives and livelihoods, this collection of essays is affirmation that we are on the right track for creative adaption to a world of less. This book helps fill the conceptual black hole that still prevails in academia, media, business and politics.” – David Holmgren, co-originator of Permaculture, author of RetroSuburbia

“The contributors explain why it is time to stop thinking so much about efficiency and start thinking about sufficiency: how much do we really need? What’s the best tool to do the job? What is enough? They describe a future that is not just sustainable but is regenerative, and where there is enough for everyone living in a low-carbon world.” – Lloyd Alter, Design Editor at treehugger.com and author of Living the 1.5 Degree Lifestyle: Why Individual Climate Action Matters More Than Ever


Some sources for the print edition:

In North America, Barnes & Noble

In Britain, Blackwell’s  and Waterstones

In Australia, Booktopia

Worldwide, from Amazon

‘Zero crashes, zero congestion, zero emissions’ – the perennial myths of autonomous vehicles

Also posted on Resilience.

For a hundred years the auto industry has held out visions of a trouble-free future for drive-everywhere society – and that future is always about 20 years away. Peter Norton urges us to see the current hype about automated vehicles in the cold light of the failed promises of the past.

American automakers had a problem in the 1920s. Cars were selling well in rural areas, but in the cities – home of a steadily growing share of the population – cars were meeting a lot of resistance.

Autonorama, by Peter Norton, is published by Island Press, October 2021.

Parking was scarce, streets were full of people, drivers usually had to go slow – and they still managed to kill a shocking number of pedestrians. Cars weren’t very convenient in cities, and there was so much public outrage over killings that many cities were considering severe restrictions on car use.

The response, Peter Norton writes in Autonorama, came from the coalition of automakers, car dealers, drivers, oil companies, and road builders he refers to as “motordom”. Their strategy had both long-term and short-term prongs. First, it was necessary to win public acceptance of the radical idea that city streets should be generally cleared of pedestrians so that cars could routinely drive faster. Second, local, state and federal governments had to be persuaded to invest millions, and soon billions, in widening streets and in building entirely new highways, not only between cities but within cities.

These long-term efforts, however, wouldn’t keep sales up in the short term. As Norton explains,

“No matter what the expenditure on roads and highways, in no given year could it deliver marked improvement. What was needed was a clear vision of a more distant and idealized future toward which motordom was striving. The promise of future perfection can buy tolerance of present affliction.” (Autonorama, from Island Press, October 2021, page 29)

To present this “clear vision of an idealized future”, motordom turned to creative minds in advertising, theater and film-making. During the 1930s, GM, Ford and Shell sponsored increasingly elaborate presentations of future cities where everyone drove, everywhere, without a hint of traffic congestion, and in perfect safety. The process culminated in Futurama, by far the most popular exhibit at the 1939 New York World’s Fair. In Norton’s view, the Futurama template has been revived periodically by motordom ever since. “Autonorama”, the heavily hyped story that “autonomous vehicles” will soon take over our roads, while ending crashes, congestion and emissions, is the latest iteration of a marketing fantasy now several generations old.

By the late 1950’s, one element of the strategy had been largely accomplished: new standards in traffic engineering had enforced auto dominance on streets, and had defined any delay to drivers – caused, of course, by all the other drivers – as an unacceptable cost to all society which should be remedied by public expenditure on roadways. A second strategic element – a vast new highway-building project – had been approved and was under construction.

Yet traffic congestion grew as rapidly as the number of cars on the roads and streets, as did the numbers of crash casualties. It was time for a new round of Futurama, and motordom answered the call with language that remains familiar all these years later.

“General Motors Avenue of Progress” with concept car “GM-X Stiletto” on display at 1964 New York World’s Fair. Photo by Don O’Brien, from Wikimedia Commons.

“Automobile accidents will be eliminated completely”

In a 1958 episode of Disneyland sponsored by the Portland Cement Association, the narrator intones,

“As Father chooses the route in advance on a push-button selector, electronics take over complete control. Progress can be accurately checked on a synchronized scanning map. With no driving responsibility, the family relaxes together. En route, business conferences are conducted by television.” (quoted in Autonorama, page 51)

The specifics of how the nascent electronics industry might accomplish these wonders had to be left to the imagination. No matter. A 1961 Pennsylvania ad campaign assured readers that “the nation’s finest automotive and scientific brains … predict that someday in the future automobile accidents will be eliminated completely.” If that blissful fantasy remained distant, it was not for lack of industry effort. Technology companies, auto makers, and government transportation departments teamed up to construct automated car test tracks in locations around the US. The vision received its most elaborate portrayal in GM’s Futurama 2, the biggest pavilion at the 1964-65 New York World’s Fair.

To the extent that newly widened arterial roads were engineered for greater speed, they also became more deadly for all users, including the fewer and fewer remaining pedestrians. And to the extent that officially favored development patterns induced people to live farther away from work, schools and shopping, even more people became car-dependent and the roads filled with congestion as fast as they were built.

As Norton explains, American cars were and remain the least spatially efficient mode of transportation in common use. It never made sense to think that by putting each driver/passenger in a steel box that takes 10 square meters of road space, we would vanquish the problem of roadway congestion. Though a congestion-free car culture could never be achieved, it remained essential for motordom to keep painting the pretty picture – all to keep consumers buying new cars every few years, and to keep politicians authorizing greater public works expenditures.

The road-building boom begun in the 1950s, with “the biggest public works project in history” justified primarily for its supposed traffic congestion benefits. But “Four decades and $100 billion later, GM was claiming that congestion was worse than ever, and getting worse still.” (Autonorama, page 93) The congestion was cited to promote a new round of public spending in what Norton terms “Futurama 3”. Reflecting public concern about the deadly effects of air pollution, the visions also started to promise the elimination of harmful emissions.

In the 1990s the new focus was on “Intelligent Highway-Vehicle Systems”. A decade of work yielded one viable congestion-reducing technology – but it was not a technology the auto industry could support. Electronics had advanced to the point where it was clearly workable to automatically charge road tolls at times of peak use, or within perennially congested areas such as urban cores. Although congestion pricing has now been used to great success in Europe, the practice does not encourage people to buy more cars, and so it was not a strategy American motordom embraced.

The latest and current flourish of car culture futurism is what Norton terms “Autonorama.” Over the past two decades, the emphasis has shifted from “smart highways” to “smart cars,” with a promise that smart cars will soon safely drive themselves everywhere, from the wide-open road to city streets teeming with cars, buses, bicyclists and pedestrians. And today, Norton adds, autonomous vehicle boosters want to sell not just new cars and new roads, but also new data.

Stanford Racing and Victor Tango together at an intersection in the DARPA Urban Challenge Finals. The 2007 contest was the third in a series sponsored by the Defense Advanced Research Projects Agency, to promote development of automated vehicles. Six of the 11 entrants completed the 96-km course, through a simulated urban environment at the George Air Force Base in Victorville, CA. Photo from Wikimedia Common.

“Social media on wheels”

If you’re one of the tens of millions who start and end each workday with a long, stressful drive, you might not even be aware of one of the major downsides in driving. A 2016 report from consultants McKinsey & Co. highlighted “the greatest single constraint on personal data collection besides sleep: the attentional demands of driving.” There’s the problem: while you are driving you can’t give your full attention to social media!

And that’s no joke, to the huge industry of data collectors and brokers. Time spent looking at the road is time wasted – because while you’re driving, the data hounds are unable to learn much about your likes, dislikes, what you believe, what you watch, what you share, and what you are likely to buy.

In an insightful chapter titled “Data Don’t Drive,” Norton cautions us to think carefully about the business catch-phrase “data-driven.” Data might guide decisions, but data don’t drive decisions – people do. People make decisions through judgment calls, both about the meaning of data, and about which data matter and which data don’t matter.

Where profit-focused industries are concerned, it is not data that matter but monetized data or at least monetizable data. The engines of consumerism are stoked by data from and about people who can spend money, and preferably lots of it. Which data is likely to be worth more: an hour’s worth of smart-phone data from a person standing in the cold waiting for a bus? Or an hour’s data from the in-car digital entertainment system in a state-of-the-art new automated car?

This in-built tendency to reinforce social inequality is at the heart of Norton’s concerns, not only with Autonorama but with the whole history of auto-centered planning. It’s not just that vast sums of public money have been devoted to infrastructure that never comes close to the promise of “no congestion, no crashes.” It’s also that in focusing attention over and over on the needs and wishes of motordom, the needs of those who can’t or won’t drive are systematically downplayed. In the process, industry and government fail dismally to preserve or create safe, efficient, pleasant, healthful, walkable urban environments. The modest expenditures that would make cities safe for non-drivers are declined, while hundreds of billions are spent instead on transport “improvements” that continue to produce more deaths, more congestion, and more pollution.

Norton writes that

“The twentieth century should have taught us that accommodation of expensive transport does not merely neglect affordable mobility; it actively degrades it.” (Autonorama, page 180)

Two decades into the 21st-century, we should heed Norton’s warnings about Autonorama, turn our backs on car culture, and begin the rewarding task of reclaiming urban space for efficient public transit, safe cycling, and healthy and stress-free walking.


Photo at top of page: An official DARPA photograph of Stanley at the 2005 DARPA Grand Challenge. Stanley, created by the Stanford University Racing Team, won the race and the 2 million US dollar prize. The automated vehicle race was sponsored by the US Defense Advanced Research Projects Agency (DARPA). Of the 23 vehicles entered in the 2005 running, five managed to complete the 212 kilometer course. Photo from Wikimedia Commons.

Colonialism, climate crisis, and the forever wars

Also published on Resilience.

Two rounds of negotiation take centre stage, about halfway through Amitav Ghosh’s new masterwork The Nutmeg’s Curse: Parables for a Planet in Crisis.

In one, US State Department and Pentagon officials win agreement that carbon emissions connected with the military are to be kept out of the Kyoto Protocol – an omission that has been preserved in international climate agreements to this day.

At the opposite end of the global power hierarchy, Khokon, a refugee from the Kishoreganj district of Bangladesh, has engaged in desperate negotiations simply to stay alive. His family’s low-lying land had been flooded for six months, followed by long droughts, hailstorms, and unseasonal downpours. The environmental degradation was followed by political depredations, as well-connected people seized increasingly scarce arable land including part of Khokon’s family’s farm. Eventually there was no better option than to sell some land and send Khokon to France – but he was quickly deported back to Bangladesh. There was no paid employment for him so after seven months of hopelessness, 

“his family sold the rest of their land and paid another agent to send him abroad again. Dubai was Khokon’s chosen destination, and he paid accordingly; but the agent cheated him and he ended up in Libya instead. For the next several years he had to endure enslavement, beatings, extortion, and torture. But somehow he managed to save up enough money to pay traffickers to send him from Libya to Sicily in a ramshackle boat.” (all quoted material in this article is from The Nutmeg’s Curse by Amitav Ghosh, published by University of Chicago Press, October 2021)

Khokon was penniless, traumatized – but unlike many others he survived the voyage. Assisted by support groups for refugees and by relatives, he was able to stay in Italy and get a job at a warehouse in Parma.

How are these two sets of negotiations related? In Ghosh’s telling, the well-connected lobbyists meeting in posh board rooms, and the refugees simply trying to stay alive, each understand in their own ways how the climate crisis is intertwined with the global power structure.

The strategists at the Pentagon are fully aware that the climate crisis is a serious challenge. Yet their own ability to consume fossil fuels must not be called into question, even though the US military consumes more fossil fuel than any other organization in the world. Their own carbon emissions are not negotiable, because fossil fuel dominance is both the enabling force and the purpose of the vast web of military bases, aircraft carriers, bombers, missiles and drones through which the US exerts influence over global trade. In Ghosh’s words,

“The job of the world’s dominant military establishments is precisely to defend the most important drivers of climate change—the carbon economy and the systems of extraction, production, and consumption that it supports. Nor can these establishments be expected to address the unseen drivers of the planetary crisis, such as inequities of class, race, and geopolitical power: their very mission is to preserve the hierarchies that favor the status quo.”

Likewise, Ghosh explains, the refugees he meets in the camps around the Mediterranean are keenly aware of the realities of climate change – but they don’t think of themselves as climate refugees. If unstable weather conditions were the only challenge they faced, after all, they could simply buy a first-class ticket and fly to a comfortable new home in another country.

“What migrants like Khokon know, on the other hand, is that every aspect of their plight is rooted in unyielding, intractable, and historically rooted forms of class and racial injustice. …They know that the processes that have displaced them are embedded in very old and deeply entrenched social relationships of power, national and international.”

The exclusion of military emissions, at the very outset of international climate talks, has contributed to a tendency to see the climate crisis as techno-economic problem. Ghosh’s purpose in The Nutmeg’s Curse is to show that the climate crisis has roots as deep and as old as settler colonialism.

The conquest of Jacatra by the VOC in 1619. J.P. Coen decided in 1619 that Jakatra, later Batavia, would be a suitable base for the VOC on Java. (VOC = Vereenigde Oost Indische Compagnie, aka Dutch East Indies Company). After the conquest the whole city was razed to the ground, built anew and renamed Batavia. (File accessed via Wikimedia Commons.)

Terms of trade

“Selamon is a village in the Banda archipelago, a tiny cluster of islands at the far southeastern end of the Indian Ocean,” Ghosh writes in the book’s opening paragraphs. This village and this cluster of islands played an important role in global history due to the presence of an unusual tree – the tree that produces nutmeg and mace.

Nutmeg had been traded in many countries for many centuries, and was one of the substances most sought after and valued in Renaissance Europe. The search for nutmeg’s origins was a key driver of the wave of European explorations which eventually chanced upon the Americas.

When traders from the Dutch East India Company arrived in the Banda Islands, they quickly understood that they could multiply their profits. Trading in nutmeg was a good business, to be sure, but it would be much better if the Dutch had a tight monopoly. There was just one problem: the Bandas were already inhabited by skilled growers and traders, who had no desire to limit their business opportunities by selling only to one buyer.

The solution to the problem was simple and brutal, but was not unusual in the annals of colonialism: the Bandanese people had to be exterminated, so the Dutch could bring in slaves to harvest nutmegs, take sole control of the world-wide nutmeg trade, and sell the product for whatever the market would bear. This transfer of power took place in the early 17th century, and the profits fueled a burst of commercial and artistic development in The Netherlands which is known as The Golden Age.

“There are innumerable books on the art of the Dutch Golden Age,” Ghosh writes, but “few indeed are those that mention the Banda genocide.” He finds the story in obscure archives, told in the words of the very people who carried out the massacres. Even at the distance of four centuries, the events in Banda in April 1621 make for nightmare-inducing reading. And the events in Banda were not unique – they were part of a widespread pattern.

About the same time as the Banda massacres, Sir Francis Bacon wrote that there are  “nations that are outlawed and proscribed by the law of nature and nations, or by the immediate commandment of God.” It is only right, Bacon continued, that “godly and civilized nations”, when encountering such outlawed nations, should “cut them off from the face of the earth” (quoted by Ghosh from Bacon’s An Advertisement Touching An Holy War). This call to genocide, Ghosh says, was echoed by other European “Enlightenment” figures – and enacted all too frequently through the centuries of colonial conquest and domination.

European elites also began to tell themselves that the meaning, the very reason for existence, of all the world was to become resources for human industry. Those who believed the contrary – that the land and seas, plants and animals, had their own stories and their own spirits – were clearly unfit for survival:

“To believe that the Earth was anything more than an inanimate resource was to declare oneself a superstitious savage—and that, in turn, was tantamount to placing oneself on the waiting list for extinction or extermination. Vitalism, savagery, and extinction were a series in which each term implied the next.” 

Several centuries of frenzied extractivism have followed, with increasingly severe costs to earth’s ecosystems, deadly results to the indigenous peoples who were colonized, but exponential growth in wealth for the colonizers. By the time European industries learned how to exploit fossil fuels, the pattern of insatiable consumption was well established.

Today the spice trade is a minuscule part of international trade. The most valuable commodities in our era have been hydrocarbons. But these resources, too, are heavily concentrated in certain parts of the globe, and when exported must pass through a handful of maritime choke points including the Strait of Hormuz, the Strait of Malacca, and the southern tip and the Horn of Africa – “the exact locations,” Ghosh writes, “that European colonial powers fought over when the Indian Ocean’s most important commodities were cloves, nutmeg, and pepper.”

Today it is not the Dutch, nor the English, nor the Spanish, who rule the seas and set the terms of trade. But the basic order of colonialism remains, for now, intact:

“This empire may be under American control today, but it is the product of centuries of combined Western effort, going back to the 1500s.”

As in centuries past, preserving the dominant position of the empire results in immense loss of life outside the empire. In the cascading ecological catastrophes through the Middle East and South Asia, coupled with the vast numbers of civilian casualties categorized as “collateral damage”, Ghosh hears many echoes from centuries past. The “forever wars” in Iraq, Afghanistan, Somalia, and many other countries have their analogues through the long centuries of European conquest in Africa, the Americas and Asia.

The “surly bonds of earth” – or “all our relations”

The Nutmeg’s Curse is a very big book considering it weighs in at a relatively modest 336 pages. In exploring his theme Ghosh dives into Greek mythology, contemporary geopolitics, classic Dutch literature, American popular culture, the history of botanical science, all in addition to his primary focus, the colonization of several continents over several centuries. His gift for both narrative and exposition make The Nutmeg’s Curse compulsively readable.

One area in which his explanations fall short, in my view, is Ghosh’s discussion of socio-technical ramifications of energy transition. He accepts and repeats, with little apparent critique, two viewpoints that have been influential in US media in recent years: one, that since the onset of fracking the US has become energy sufficient, with no need for hydrocarbon imports; and two, that the technologies for a seamless transition from hydrocarbons to renewable energies are already available. But these arguments play a relatively minor role in the great sweep of The Nutmeg’s Curse.

 The story Ghosh tells is often appalling, sickening in its portrayal of human cruelty, and frightening in what it says about the daunting challenges we face to achieve a just world through coming decades. It is also enlightening and, in the end, hopeful.

Consider these lines from a poem by Canadian-American pilot John Gillespie Magee, written shortly before his death in World War II:

“Oh, I have slipped the surly bonds of earth
And danced the skies on laughter-silvered wings.”

Magee “was almost instantly canonized as the American poet of World War II,” Ghosh writes, and these lines soon appeared on headstones throughout the United States, they were used in the midnight sign-off for many television stations, a copy of the poem was deposited on the moon in 1971, and Ronald Reagan recited the lines to dramatic effect after the space shuttle Challenger disaster. But Ghosh asks us to consider:

“What exactly is ‘surly’ about the Earth’s bonds? [W]hy should the planet be thought of as a home from which humans would be fortunate to escape?”

The deep-seated disdain for the earth was not a mere mid-twentieth-century fad. Ghosh finds the same sentiment expressed in stark terms, for example, in the work of Alfred, Lord Tennyson, “perhaps the most celebrated English poet of the late nineteenth century.” But it is an unfortunately logical outcome of a perspective that sees all the Earth, that sees Nature – soil, minerals, plants, animals, and even people – as resources to be consumed for the profit of those clever enough to dominate.

Today, Ghosh says, this earth-disdaining ethos of domination has expanded well beyond traditional colonial powers. With the global hegemony of neo-liberal economics, ruling parties in Brazil, India and China are eagerly joining the extractivist project; that is one key reason why rain forests are shrinking so rapidly, and why half of all carbon emissions from the entire industrial age have happened in just the past thirty years.

In the face of all this destruction, where can one find hope? Perhaps here, Ghosh writes: a revival of vitalist beliefs, with deep love for the sacredness of earthly spaces, is spreading in many countries. In many cases led by indigenous peoples, this vitalist revival is at the forefront of environmental struggles. He notes the legal victories, from New Zealand to South America, “that Indigenous peoples around the world have won in recent years, precisely on vitalist grounds, by underscoring the sacredness of mountains, rivers, and forests, and by highlighting the ties of kinship by which they are bound to humans.” He is inspired by Native American resistance movements which honour “the familial instinct to protect ‘all our relatives’—that is to say, the entire spectrum of nonhuman kin, including rivers, mountains, animals, and the spirits of the land.”

Is it naïve, wishful thinking, or even anti-scientific, to find hope in loving “all our relatives”? Ghosh asks that question too, and we’ll close with his answer:

“Is this magical thinking? Perhaps—but no more so than the idea of colonizing Mars; or the belief, now enshrined in the Paris Agreement, that a new technology for removing vast amounts of carbon from the atmosphere will magically appear in the not-too-distant future.

“The difference is that a vitalist mass movement, because it depends not on billionaires or technology, but on the proven resources of the human spirit, may actually be magical enough to change hearts and minds across the world.”


Photo at top of page: A Dutch men-of-war and small vessels in a breeze, by Dutch Golden Age painter Lieve Verschuier (1627–1686). Now in National Museum of Warsaw. Accessed at Wikimedia Commons.

Sunshine, wind, tides and worldwatts

A review of Renewable Energy: Ten Short Lessons

Also published on Resilience

Fun physics fact: water carries so much more kinetic energy than air that “A tidal current of 3 knots has the same energy density as a steady wind stream at 29 knots (a fair old blow).”

And consider this: “Ninety-nine per cent of planet Earth is hotter than 1,000 °C (1,832 °F). The earth is, in fact, a giant leaky heat battery.”

Stephen Peake uses these bits of information and many more to lucidly outline the physical bases of renewable energy sources, including solar and wind energy, geothermal energy, wave energy and tidal current energy. But the book also touches on the complex relationship between the physics of renewable energy, and the role energy plays in human society – and the results aren’t always enlightening.

Peake takes on a formidable task in Renewable Energy: Ten Short Lessons. The book is part of the “Pocket Einstein” series from Johns Hopkins University Press (or from Michael O’Mara Books in Britain). He has less than 200 small-format pages in which to cover both the need for and the prospects for a transition to 100% renewable energy.

Key to his method is the concept of a “worldwatt” – “the rate at which the world uses all forms of primary energy.” Peake estimates the rate of energy flow around the world from various potential renewable energy sources. Not surprisingly, he finds that the theoretically available renewable energy sources are far greater than all energy currently harnessed – primarily from fossil fuels – by the global economy.

But how do we get from estimates of theoretically available energy, to estimates of how much of that energy is practically and economically available? Here Peake’s book isn’t much help. He asks us to accept this summation:

“Taking a conservative mid-estimate of the numbers in the literature, we see that the global technical potential of different renewable sources adds up to 46 worldwatts. There is a definite and reasonable prospect of humans harnessing 1 worldwatt from 100 per cent renewable energy in the future.” (page 31)

But he offers no evidence or rationale for the conclusion that getting 1 worldwatt from renewable sources is a “reasonable prospect”, nor how near or far “in the future” that might occur.

A skeptic might well dismiss the book as renewable energy boosterism, noting a cheery optimism from the opening pages: “There is an exciting, renewable, electric, peaceful, prosperous, safer future just up ahead.” Others might say such optimism is the most helpful position one can take, given that we have no choice but to switch to a renewable energy way of life, ASAP, if we want human presence on earth to last much longer.

Yet a cheerfully pro-renewable energy position can easily shade into a cheerful pro-consumptionist stance – the belief that renewable energies can quickly become the driving force of our current industrial economies, with little change in living standards and no end to economic growth.

Peake briefly introduces a key concept for assessing which renewable energy sources will be economically viable, and in what quantities: Energy Return On Energy Invested (EROEI). He explains that as we exploit more difficult energy sources, the EROEI goes down:

“As wind turbines have become larger and moved offshore, the EROEI ratio for wind over a twenty-year lifetime has declined from around 20:1 in the early 2000s to as low as 15:1 in recent years for some offshore wind farms.” (page 84)

Affordable renewable energy, in other words, doesn’t always “scale up”. The greater the total energy demanded by society, the more we will be impelled to site wind turbines and solar panels in areas beyond the “sweet spots” for Energy Return On Energy Invested. Peake’s book would be stronger if he used this recognition to give better context to statements such as “Renewable electricity is now cheaper than fossil electricity …” (in the book’s opening paragraph), and “solar is now the cheapest electricity in history” (page 70).

While Peake expresses confidence that a prosperous renewable energy world is just ahead, he doesn’t directly engage with the issue of how, or how much, affluent lifestyles may need to change. The closest he comes to grappling with this contentious issue is in his discussion of energy waste:

“We need to stop wasting all forms of energy, including clean renewable sources of heat and electricity. The sooner we shrink our total overall demand for energy, the sooner renewables will be able to provide 100 per cent of the energy we need to power our zero-carbon economies.” (page 141)

Near the end of the book, in brief remarks about electric cars, Peake makes some curious statements about EVs:

“Millions of [electric vehicles] will need charging from the network. This presents both a challenge and an opportunity in terms of managing the network load.” (page 130, emphasis mine)

And a few pages later:

“In the future, new fleets of electric vehicles parked overnight could become another mass source of electricity storage and supply.” (page 134 emphasis mine)

In my next post I’ll take up this concept of the electric vehicle as energy storage, supply and load management resource.

In conclusion, Renewable Energy: Ten Short Lessons is a valuable primer on the physics of renewable energy, but isn’t a lot of help in establishing whether or not the existing world economy can be successfully transitioned to zero-carbon energy.


Photo at top of page: Wind Turbines near Grevelingenmeer, province of Zeeland, Netherlands