Platforms for a Green New Deal

Two new books in review

Also published on Resilience.org

Does the Green New Deal assume a faith in “green growth”? Does the Green New Deal make promises that go far beyond what our societies can afford? Will the Green New Deal saddle ordinary taxpayers with huge tax bills? Can the Green New Deal provide quick solutions to both environmental overshoot and economic inequality?

These questions have been posed by people from across the spectrum – but of course proponents of a Green New Deal may not agree on all of the goals, let alone an implementation plan. So it’s good to see two concise manifestos – one British, one American – released by Verso in November.

The Case for the Green New Deal (by Ann Pettifor), and A Planet to Win: Why We Need a Green New Deal (by Kate Aronoff, Alyssa Battistoni, Daniel Aldana Cohen and Thea Riofrancos) each clock in at a little under 200 pages, and both books are written in accessible prose for a general audience.

Surprisingly, there is remarkably little overlap in coverage and it’s well worth reading both volumes.

The Case for a Green New Deal takes a much deeper dive into monetary policy. A Planet To Win devotes many pages to explaining how a socially just and environmentally wise society can provide a healthy, prosperous, even luxurious lifestyle for all citizens, once we understand that luxury does not consist of ever-more-conspicuous consumption.

The two books wind to their destinations along different paths but they share some very important principles.

Covers of The Case For The Green New Deal and A Planet To Win

First, both books make clear that a Green New Deal must not shirk a head-on confrontation with the power of corporate finance. Both books hark back to Franklin Delano Roosevelt’s famous opposition to big banking interests, and both books fault Barack Obama for letting financial kingpins escape the 2008 crash with enhanced power and wealth while ordinary citizens suffered the consequences.

Instead of seeing the crash as an opportunity to set a dramatically different course for public finance, Obama presented himself as the protector of Wall Street:

“As [Obama] told financial CEOs in early 2009, “My administration is the only thing between you and the pitchforks.” Frankly, he should have put unemployed people to work in a solar-powered pitchfork factory.” (A Planet To Win, page 13)

A second point common to both books is the view that the biggest and most immediate emissions cuts must come from elite classes who account for a disproportionate share of emissions. Unfortunately, neither book makes it clear whether they are talking about the carbon-emitting elite in wealthy countries, or the carbon-emitting elite on a global scale. (If it’s the latter, that likely includes the authors, most of their readership, this writer and most readers of this review.)

Finally, both books take a clear position against the concept of continuous, exponential economic growth. Though they argue that the global economy must cease to grow, and sooner rather than later, their prescriptions also appear to imply that there will be one more dramatic burst of economic growth during the transition to an equitable, sustainable steady-state economy.

Left unasked and unanswered in these books is whether the climate system can stand even one more short burst of global economic growth.

Public or private finance

The British entry into this conversation takes a deeper dive into the economic policies of US President Franklin Roosevelt. British economist Ann Pettifor was at the centre of one of the first policy statements that used the “Green New Deal” moniker, just before the financial crash of 2007–08. She argues that we should have learned the same lessons from that crash that Roosevelt had to learn from the Depression of the 1930s.

Alluding to Roosevelt’s inaugural address, she summarizes her thesis this way:

“We can afford what we can do. This is the theme of the book in your hands. There are limits to what we can do – notably ecological limits, but thanks to the public good that is the monetary system, we can, within human and ecological limits, afford what we can do.” (The Case for the Green New Deal, page xi)

That comes across as a radical idea in this day of austerity budgetting. But Pettifor says the limits that count are the limits of what we can organize, what we can invent, and, critically, what the ecological system can sustain – not what private banking interests say we can afford.

In Pettifor’s view it is not optional, it is essential for nations around the world to re-win public control of their financial systems from the private institutions that now enrich themselves at public expense. And she takes us through the back-and-forth struggle for public control of banking, examining the ground-breaking theory of John Maynard Keynes after World War I, the dramatically changed monetary policy of the Roosevelt administration that was a precondition for the full employment policy of the original New Deal, and the gradual recapture of global banking systems by private interests since the early 1960s.

On the one hand, a rapid reassertion of public banking authority (which must include, Pettifor says, tackling the hegemony of the United States dollar as the world’s reserve currency) may seem a tall order given the urgent environmental challenges. On the other hand, the global financial order is highly unstable anyway, and Pettifor says we need to be ready next time around:

“sooner rather than later the world is going to be faced by a shuddering shock to the system. … It could be the flooding or partial destruction of a great city …. It could be widespread warfare…. Or it could be (in my view, most likely) another collapse of the internationally integrated financial system. … [N]one of these scenarios fit the ‘black swan’ theory of difficult-to-predict events. All three fall within the realm of normal expectations in history, science and economics.” (The Case for the Green New Deal, pg 64)

A final major influence acknowledged by Pettifor is American economist Herman Daly, pioneer of steady-state economics. She places this idea at the center of the Green New Deal:

“our economic goal is for a ‘steady state’ economy … that helps to maintain and repair the delicate balance of nature, and respects the laws of ecology and physics (in particular thermodynamics). An economy that delivers social justice for all classes, and ensures a liveable planet for future generations.” (The Case for the Green New Deal, pg 66)

Beyond a clear endorsement of this principle, though, Pettifor’s book doesn’t offer much detail on how our transportation system, food provisioning systems, etc, should be transformed. That’s no criticism of the book. Providing a clear explanation of the need for transformation in monetary policy; why the current system of “free mobility” of capital allows private finance to work beyond the reach of democratic control, with disastrous consequences for income equality and for the environment; and how finance was brought under public control before and can be again – this  is a big enough task for one short book, and Pettifor carries it out with aplomb.

Some paths are ruinous. Others are not.

Writing in The Nation in November of 2018, Daniel Aldana Cohen set out an essential corrective to the tone of most public discourse:

“Are we doomed? It’s the most common thing people ask me when they learn that I study climate politics. Fair enough. The science is grim, as the UN Intergovernmental Panel on Climate Change (IPCC) has just reminded us with a report on how hard it will be to keep average global warming to 1.5 degrees Celsius. But it’s the wrong question. Yes, the path we’re on is ruinous. It’s just as true that other, plausible pathways are not. … The IPCC report makes it clear that if we make the political choice of bankrupting the fossil-fuel industry and sharing the burden of transition fairly, most humans can live in a world better than the one we have now.” (The Nation, “Apocalyptic Climate Reporting Completely Misses the Point,” November 2, 2018; emphasis mine)

There’s a clear echo of Cohen’s statement in the introduction to A Planet To Win:

“we rarely see climate narratives that combine scientific realism with positive political and technological change. Instead, most stories focus on just one trend: the grim projections of climate science, bright reports of promising technologies, or celebrations of gritty activism. But the real world will be a mess of all three. (A Planet To Win, pg 3)

The quartet of authors are particularly concerned to highlight a new path in which basic human needs are satisfied for all people, in which communal enjoyment of public luxuries replaces private conspicuous consumption, and in which all facets of the economy respect non-negotiable ecological limits.

The authors argue that a world of full employment; comfortable and dignified housing for all; convenient, cheap or even free public transport; healthy food and proper public health care; plus a growth in leisure time –  this vision can win widespread public backing and can take us to a sustainable civilization.

A Planet To Win dives into history, too, with a picture of the socialist housing that has been home to generations of people in Vienna. This is an important chapter, as it demonstrates that there is nothing inherently shabby in the concept of public housing:

“Vienna’s radiant social housing incarnates its working class’s socialist ideals; the United States’ decaying public housing incarnates its ruling class’s stingy racism.” (A Planet To Win, pg 127)

Likewise, the book looks at the job creation programs of the 1930s New Deal, noting that they not only built a vast array of public recreational facilities, but also carried out the largest program of environmental restoration ever conducted in the US.

The public co-operatives that brought electricity to rural people across the US could be revitalized and expanded for the era of all-renewable energy. Fossil fuel companies, too, should be brought under public ownership – for the purpose of winding them down as quickly as possible while safeguarding workers’ pensions.

In their efforts to present a New Green Deal in glowingly positive terms, I think the authors underestimate the difficulties in the energy transition. For example, they extol a new era in which Americans will have plenty of time to take inexpensive vacations on high-speed trains throughout the country. But it’s not at all clear, given current technology, how feasible it will be to run completely electrified trains through vast and sparsely populated regions of the US.

In discussing electrification of all transport and heating, the authors conclude that the US must roughly double the amount of electricity generated – as if it’s a given that Americans can or should use nearly as much total energy in the renewable era as they have in the fossil era.1

And once electric utilities are brought under democratic control, the authors write, “they can fulfill what should be their only mission: guaranteeing clean, cheap, or even free power to the people they serve.” (A World To Win, pg 53; emphasis mine)

A realistic understanding of thermodynamics and energy provision should, I think, prompt us to ask whether energy is ever cheap or free – (except in the dispersed, intermittent forms of energy that the natural world has always provided).

As it is, the authors acknowledge a “potent contradiction” in most current recipes for energy transition:

“the extractive processes necessary to realize a world powered by wind and sun entail their own devastating social and environmental consequences. The latter might not be as threatening to the global climate as carbon pollution. But should the same communities exploited by 500 years of capitalist and colonial violence be asked to bear the brunt of the clean energy transition …?” (A Planet To Win, pg 147-148)

With the chapter on the relationship between a Green New Deal in the industrialized world, and the even more urgent challenges facing people in the Global South, A World To Win gives us an honest grappling with another set of critical issues. And in recognizing that “We hope for greener mining techniques, but we shouldn’t count on them,” the authors make it clear that the Green New Deal is not yet a fully satisfactory program.

Again, however, they accomplish a lot in just under 200 pages, in support of their view that “An effective Green New Deal is also a radical Green New Deal” (A Planet To Win, pg 8; their emphasis). The time has long passed for timid nudges such as modest carbon taxes or gradual improvements to auto emission standards.

We are now in “a trench war,” they write, “to hold off every extra tenth of a degree of warming.” In this war,

“Another four years of the Trump administration is an obvious nightmare. … But there are many paths to a hellish earth, and another one leads right down the center of the political aisle.” (A Planet To Win, pg 180)


1 This page on the US government Energy Information Agency website gives total US primary energy consumption as 101 quadrillion Btus, and US electricity use as 38 quadrillion Btus. If all fossil fuel use were stopped but electricity use were doubled, the US would then use 76 quadrillion Btus, or 75% of current total energy consumption.

Make room for the bus

A review of Better Buses, Better Cities

Also published at Resilience.org

Better Buses, Better Cities, by Steven Higashide, published by Island Press and University of British Columbia Press, October 2019

We often hear that “the greenest building is the one you already have.” The idea is that the up-front carbon emissions released during the production of a new building can outweigh many  years of emissions from the old building. So in many cases retrofitting an old building makes more environmental sense than replacing it with a new “state-of-the-art” facility.

But should we say “the greenest transportation infrastructure is the one we already have?” Yes, in the sense that by far our biggest transportation infrastructure item is our network of paved roads. And rather than rushing to construct a new infrastructure – with all the up-front carbon emissions that would entail – we should simply stop squandering most of our road lanes on the least efficient mode of transportation, the private car.

While new light-rail systems, subways, inter-urban commuter trains all have their place, simply giving buses preference on existing roads could improve urban quality of life while bringing carbon emissions down – long before the planning and approval process for new train lines is complete.

Steven Higashide’s new book Better Buses, Better Cities is a superb how-to manual for urban activists and urban policy-makers. The book is filled with examples from transit reforms throughout the United States, but its relevance extends to countries like Canada whose city streets are similarly choked with creeping cars.

Given the book’s title, it is ironic that few of these reforms involve improvements to the bus vehicle itself (though the gradual replacement of diesel buses with electric buses is an important next step). Instead the key steps have to do with scheduling, prioritizing the movement of buses on city streets, and improving the environment for transit users before and after their bus rides.

Higashide begins the book by noting that buses can make far more effective space of busy roads:

Add bus service to a road and you can easily double the number of people it carries – even more so if buses are given dedicated space on the street or if a train runs down it. When you see a photograph of a bus in city traffic, there’s a decent chance that the bus is carrying more people than all the cars in the same frame.” (Better Buses, Better Cities, page 3)

Buses move more people than cars even on congested streets, but the people-moving power of a street really soars if there is adequate dedicated space for pedestrians, cyclists and transit users:

From Better Buses, Better Cities, by Steven Higashide, page 3

Frequency equals freedom

Which comes first – a bus route with several buses each hour or a bus route with big ridership? Municipal politicians and bean counters often argue that it makes no sense to up the frequency of lines with low ridership. But many surveys, and the experience in many cities, show that potential riders are unlikely to switch from cars to buses if the bus service is infrequent. In Higashide’s words,

The difference between a bus that runs every half hour and a bus that runs every 15 minutes is the difference between planning your life around a schedule and the freedom to show up and leave when you want.” (Better Buses, p. 23)

There is thus an inherent tension between planning routes for frequency, and planning routes for maximum coverage. The compromise is never perfect. A small number of high-frequency routes might get high ridership – as long as the major destinations for a sufficient number of riders are easily accessible. A route map with meandering service through every area of a city will provide maximum coverage – but if service is infrequent and slow, few people will use it.

In any case, overall bus network plans must be updated periodically to reflect major changes in cities, and Higashide provides case studies of cities in which transit restructuring was accomplished with very good results in a short time period.

Still, adding several buses each hour doesn’t help much if the streets are highly congested. Instead the result might be “bunching”: a would-be rider waits for a half hour, only to then have three buses arriving in a row with the first two packed full.

He emphasizes that “making buses better can start with redrawing a map, but it has to continue by redesigning the street.” (Better Buses, p. 37)

To emphasize the point he cites declining average speeds in most US cities since 2012, with New York City buses crawling at 7.6 mph in 2016. “Among the culprits,” Higashide writes, “is the enormous increase in Uber and Lyft rides; Amazon and other retailers have also led to a doubling in urban freight traffic associated with online shopping.” (Better Buses, p. 44)

Traffic stopped at Church Street and Park Place near the Financial District in Tribeca, Manhattan. Photo by Tdorante10 via Wikimedia Commons.

Effectively restricting some lanes to buses is one strategy to make transit use an  attractive option while making better use of road space. Others are the introduction of advance traffic signals for buses, or “bump-out” bus stops that allow buses to travel in a straight line, rather than swerving right to pick up passengers and then waiting for a chance to move back out into the traffic.

Transit planners often overlook the pedestrian experience as something that’s out of their realm, Higashide says. But a large majority of bus users walk to the bus, and then walk from the bus to their destination.

Unfortunately the dominance of autos in American cities has resulted in streets that are noisy, polluted, frightening and unsafe for pedestrians. In addition transit stops often have no shelter from scorching sun, cold wind or rain, and transit-using pedestrians may have very good reason to feel unsafe while they wait for a bus or while walking to or from the bus. Higashide gives welcome attention to these issues.

Finally, he discusses the rapid progress made by activists in cities where “pop-up” projects have introduced ideas such as dedicated bus lanes. Transit agencies, he says, “have to discard ponderous project development processes that result in 5-year timelines for bus lane projects and try tactical approaches that change streets overnight instead.” (Better Buses, page 11)

The people most likely to need better bus services are least likely to sit through years of public consultations. But pilot projects on specific street sections can demonstrate the many benefits of bus prioritization – for transit users, pedestrians, cyclists, car drivers and businesses alike. Higashide discusses pop-up projects which have been introduced in weeks instead of months or years, and have proven effective so quickly that they were adopted and expanded.

That’s good news for city dwellers, and good news for the rest of us too. With such an urgent need to cut carbon emissions, fast, we can not afford to spend ten or fifteen years waiting for huge new transit infrastructures. Likewise we shouldn’t put our hopes in a vast new fleet of electric cars, which will clog streets just as thoroughly as internal combustion cars do today.

In his conclusion, Higashide turns his focus directly to both the social justice and carbon emission implications of transit choices. Speaking of Green New Deal policies, he says “what they choose not to fund is as important as what they do fund.”

Federal policy must make it harder to build new roads, recognizing that highways are fossil fuel infrastructure as surely as oil and gas pipelines are and that their construction often directly harms neighborhoods where black and brown people live, so that suburban residents can get a faster trip.” (Better Buses, page 128)

We don’t need more lanes of pavement. We need to make room for buses on the pavement we already have.


Photo at top: Chicago Transit Authority buses at 87th St, photo by David Wilson, via Wikimedia Commons

Questions as big as the atmosphere

A review of After Geoengineering

Also published at Resilience.org

After Geoengineering is published by Verso Books, Oct 1 2019.

What is the best-case scenario for solar geoengineering? For author Holly Jean Buck and the scientists she interviews, the best-case scenario is that we manage to keep global warming below catastrophic levels, and the idea of geoengineering quietly fades away.

But before that can happen, Buck explains, we will need heroic global efforts both to eliminate carbon dioxide emissions and to remove much of the excess carbon we have already loosed into the skies.

She devotes most of her new book After Geoengineering: Climate Tragedy, Repair, and Restoration to proposed methods for drawing down carbon dioxide levels from the atmosphere. Only after showing the immense difficulties in the multi-generational task of carbon drawdown does she directly discuss techniques and implications of solar geoengineering (defined here as an intentional modification of the upper atmosphere, meant to block a small percentage of sunlight from reaching the earth, thereby counteracting part of global heating).

The book is well-researched, eminently readable, and just as thought-provoking on a second reading as on the first. Unfortunately there is little examination of the way future energy supply constraints will affect either carbon drawdown or solar engineering efforts. That significant qualification aside, After Geoengineering is a superb effort to grapple with some of the biggest questions for our collective future.

Overshoot

The fossil fuel frenzy in the world’s richest countries has already put us in greenhouse gas overshoot, so some degree of global heating will continue even if, miraculously, there were an instant political and economic revolution which ended all carbon dioxide emissions tomorrow. Can we limit the resulting global heating to 1.5°C? At this late date our chances aren’t good.

As Greta Thunberg explained in her crystal clear fashion to the United Nations Climate Action Summit:

“The popular idea of cutting our emissions in half in 10 years only gives us a 50% chance of staying below 1.5C degrees, and the risk of setting off irreversible chain reactions beyond human control.

“Maybe 50% is acceptable to you. But those numbers don’t include tipping points, most feedback loops, additional warming hidden by toxic air pollution or the aspects of justice and equity. They also rely on my and my children’s generation sucking hundreds of billions of tonnes of your CO2 out of the air with technologies that barely exist.” 1

As Klaus Lackner, one of the many researchers interviewed by Buck, puts it, when you’ve been digging yourself into a hole, of course the first thing you need to do is stop digging – but then you still need to fill in the hole.2

How can we fill in the hole – in our case, get excess carbon back out of the atmosphere? There are two broad categories, biological processes and industrial processes, plus some technologies that cross the lines. Biological processes include regenerative agriculture and afforestation while industrial processes are represented most prominently by Carbon Capture and Sequestration (CCS).

Buck summarizes key differences this way:

“Cultivation is generative. Burial, however, is pollution disposal, is safety, is sequestering something away where it can’t hurt you anymore. One approach generates life; the other makes things inert.” (After Geoengineering (AG), page 122)

Delving into regenerative agriculture, she notes that “over the last 10,000 years, agriculture and land conversion has decreased soil carbon globally by 840 gigatons, and many cultivated soils have lost 50 to 70 percent of their original organic carbon” (AG, p 101).

Regenerative agriculture will gradually restore that carbon content in the soil and reduce carbon dioxide in the air – while also making the soil more fertile, reducing wind and water erosion, increasing the capacity of the soil to stay healthy when challenged by extreme rainfalls or drought, and making agriculture ecologically sustainable in contrast to industrial agriculture’s ongoing stripping the life from soil.

Regenerative agriculture cannot, however, counteract the huge volumes of excess carbon dioxide we are currently putting into the atmosphere. And even when we have cut emissions to zero, Buck writes, regenerative agriculture is limited in how much of the excess carbon it can draw down:

“soil carbon accrual rates decrease as stocks reach a new equilibrium. Sequestration follows a curve: the new practices sequester a lot of carbon at first, for the first two decades or so, but this diminishes over time toward a new plateau. Soil carbon sequestration is therefore a one-off method of carbon removal.” (AG, p 102)

There are other types of cultivation that can draw down carbon dioxide, and Buck interviews researchers in many of these fields. The planting of billions of trees has received the most press, and this could store a lot of carbon. But it also takes a lot of land, and it’s all too easy to imagine that more frequent and fiercer wildfires could destroy new forests just when they have started to accumulate major stores of carbon.

Biochar – the burying of charcoal in a way that stores carbon for millennia while also improving soil fertility – was practiced for centuries by indigenous civilizations in the Amazon. Its potential on a global scale is largely untapped but is the subject of promising research.

In acknowledging the many uncertainties in under-researched areas, Buck does offer some slender threads of hope here. Scientists say that “rocks for crops” techniques – in which certain kinds of rock are ground up and spread on farmland – could absorb a lot of carbon while also providing other soil nutrients. In the lab, the carbon absorption is steady but geologically slow, but there is some evidence that in the real world, the combined effects of microbes and plant enzymes may speed up the weathering process by at least an order of magnitude. (AG, p 145-146)

The cultivation methods offer a win-win-win scenario for carbon drawdown – but we’re on pace to a greenhouse gas overshoot that will likely dwarf the drawdown capacity of these methods. Buck estimates that cultivation methods, at the extremes of their potential, could sequester perhaps 10 to 20 gigatons (Gt) of carbon dioxide per year (and that figure would taper off once most agricultural soils had been restored to a healthy state). That is unlikely to be anywhere near enough:

“Imagine that emissions flatline in 2020; the world puts in a strong effort to hold them steady, but it doesn’t manage to start decreasing them until 2030. … But ten years steady at 50 Gt CO2 eq [carbon dioxide equivalent emissions include other gases such as methane] – and there goes another 500 Gt CO2 eq into the atmosphere. That one decade would cancel out the 500 Gt CO2 eq the soils and forests could sequester over the next 50 years (sequestered at an extreme amount of effort and coordination among people around the whole world).” (AG p 115)

With every year that we pump out fossil fuel emissions, then, we compound the intergenerational crime we have already committed against Greta Thunberg and her children’s generations. With every year of continued emissions, we increase the probability that biological, generative methods of carbon drawdown will be too slow. With every year of continued emissions, we increase the degree to which future generations will be compelled to engage in industrial carbon drawdown work, using technologies which do not enrich the soil, which produce no food, which will not directly aid the millions of species struggling for survival, and which will suck up huge amounts of energy.

Carbon Capture and Sequestration

Carbon Capture and Sequestration (CCS) has earned a bad name for good reasons. To date most CCS projects – even those barely past the concept stage – have been promoted by fossil fuel interests. CCS projects offer them research subsidies for ways to continue their fossil fuel businesses, plus a public relations shine as proponents of “clean” energy.

A lignite mine in southwest Saskatchewan. This fossil fuel deposit is home to one of the few operating Carbon Capture and Sequestration projects. Carbon from a coal-fired generating station is captured and pumped into a depleting oil reservoir – for the purpose of prolonging petroleum production.

Buck argues that in spite of these factors, we need to think about CCS technologies separate from their current capitalist contexts. First of all, major use of CCS technologies alongside continued carbon emissions would not be remotely adequate – we will need to shut off carbon emissions AND draw down huge amounts of carbon from the atmosphere. And there is no obvious way to fit an ongoing, global program of CCS into the framework of our current corporatocracy.

The fossil fuel interests possess much of the technical infrastructure that could be used for CCS, but their business models rely on the sale of polluting products. So if CCS is to be done in a sustained fashion, it will need to be done in a publicly-funded way where the service, greenhouse gas drawdown, is for the benefit of the global public (indeed, the whole web of life, present and future); there will be no “product” to sell.

However CCS efforts are organized, they will need to be massive in order to cope with the amounts of carbon emissions that fossil fuel interests are still hell-bent on releasing. In the words of University of Southern California geologist Joshua West,

“The fossil fuels industry has an enormous footprint …. Effectively, if we want to offset that in an industrial way, we have to have an industry that is of equivalent proportion ….” (AG, p 147)

Imagine an industrial system that spans the globe, employing as many people and as much capital as the fossil fuel industries do today. But this industry will produce no energy, no wealth, no products – it will be busy simply managing the airborne refuse bequeathed by a predecessor economy whose dividends have long since been spent.

So while transitioning the entire global economy to strictly renewable energies, the next generations will also need enough energy to run an immense atmospheric garbage-disposal project.

After Geoengineering gives brief mentions but no sustained discussion of this energy crunch.

One of the intriguing features of the book is the incorporation of short fictional sketches of lives and lifestyles in coming decades. These sketches are well drawn, offering vivid glimpses of characters dealing with climate instability and working in new carbon drawdown industries. The vignettes certainly help in putting human faces and feelings into what otherwise might remain abstract theories.

Yet there is no suggestion that restricted energy supplies will be a limiting factor. The people in the sketches still travel in motorized vehicles, check their computers for communications, run artificial intelligence programs to guide their work, and watch TV in their high-rise apartments. In these sketches, people have maintained recognizably first-world lifestyles powered by zero-emission energy technologies, while managing a carbon drawdown program on the same scale as today’s fossil fuel industry.

If you lean strongly towards optimism you may hope for that outcome – but how can anyone feel realistically confident in that outcome?

The lack of a serious grappling with this energy challenge is, in my mind, the major shortcoming in After Geoengineering. And big questions about energy supply will hang in the air not only around carbon sequestration, but also around solar geoengineering if humanity comes to that.

Shaving the peak

Solar geoengineering –  the intentional pumping of substances into the upper atmosphere into order to block a percentage of incoming sunlight to cool the earth – has also earned a bad name among climate activists. It is, of course, a dangerous idea – just as extreme as the practice of pumping billions of tonnes of extra carbon dioxide into the atmosphere to overheat the earth.

But Buck makes a good case – a convincing case, in my opinion – that in order to justifiably rule out solar geoengineering, we and our descendants will have to do a very good job at both eliminating carbon emissions and drawing down our current excess of carbon dioxide, fast.

Suppose we achieve something which seems far beyond the capabilities of our current political and economic leadership. Suppose we get global carbon emissions on a steep downward track, and suppose that the coming generation manages to transition to 100% renewable while also starting a massive carbon drawdown industry. That would be fabulous – and it still may not be enough.

As Buck points out, just as it has proven difficult to predict just how fast the earth system responds to a sustained increased in carbon dioxide levels, nobody really knows how quickly the earth system would respond to a carbon drawdown process. The upshot: even in an era where carbon dioxide levels are gradually dropping, it will be some time before long-term warming trends reverse. And during that interim a lot of disastrous things could happen.

Take the example of coral reefs. Reef ecosystems are already dying due to ocean acidification, and more frequent oceanic heat waves threaten to stress reefs beyond survival. Buck writes,

“Reefs protect coasts from storms; without them, waves reaching some Pacific islands would be twice as tall. Over 500 million people depend on reef ecosystems for food and livelihoods. Therefore, keeping these ecosystems functioning is a climate justice issue.” (AG, p 216)

In a scenario about as close to best-case as we could realistically expect, the global community might achieve dropping atmospheric carbon levels, but still need to buy time for reefs until temperatures in the air and in the ocean have dropped back to a safe level. This is the plausible scenario studied by people looking into a small-scale type of geoengineering – seeding the air above reefs with a salt-water mist that could, on a regional scale only, reflect back sunlight and offer interim protection to essential and vulnerable ecosystems.

One could say that this wouldn’t really be geoengineering, since it wouldn’t affect the whole globe – and certainly any program to affect the whole globe would involve many more dangerous uncertainties.

Yet due to our current and flagrantly negligent practice of global-heating-geoengineering, it is not hard to imagine a scenario this century where an intentional program of global-cooling-geoengineering may come to be a reasonable choice.

Buck takes us through the reasoning with the following diagram:

From After Geoengineering, page 219

If we rapidly cut carbon emissions to zero, and we also begin a vast program of carbon removal, there will still be a significant time lag before atmospheric carbon dioxide levels have dropped to a safe level and global temperatures have come back down. And in that interim, dangerous tipping points could be crossed.

To look at just one: the Antarctic ice sheets are anchored in place by ice shelves extending into the ocean. When warming ocean water has melted these ice shelves, a serious tipping point is reached. In the words of Harvard atmospheric scientist Peter Irvine,

“Because of the way the glaciers meet the ocean, when they start to retreat, they have kind of a runaway retreat. Again, very slow, like a couple of centuries. Five centuries. But once it starts, it’s not a temperature-driven thing; it’s a dynamic-driven thing … Once the ice shelf is sheared off or melted away, it’s not there to hold the ice sheet back and there’s this kind of dynamic response.” (AG, p 236)

The melting of these glaciers, of course, would flood the homes of billions of people, along with a huge proportion of the world’s agricultural land and industrial infrastructure.

So given the current course of history, it’s not at all far-fetched that the best option available in 50 years might be a temporary but concerted program of solar geoengineering. If this could “shave the peak” off a temperature overshoot, and thereby stop the Antarctic ice from crossing a tipping point, would that be a crazy idea? Or would it be a crazy idea not to do solar geoengineering?

These questions will not go away in our lifetimes. But if our generation and the next can end the fossil fuel frenzy, then just possibly the prospect of geoengineering can eventually be forgotten forever.


1 Greta Thunberg, “If world leaders choose to fail us, my generation will never forgive them”, address to United Nations, New York, September 23, 2019, as printed in The Guardian.
2 In the webinar “Towards a 20 GT Negative CO2 Emissions Industry”, sponsored by Security and Sustainability Forum, Sept 19, 2019.

Pulling the plug on fossil fuel production subsidies

Also published at Resilience.org

How long would the fossil fuel economy last if we took it off life support?

Or to state the question more narrowly and less provocatively, what would happen if we removed existing subsidies to fossil fuel production?

Some fossil fuel producers are still highly profitable even without subsidies, of course. But a growing body of research shows that many new petroleum-extraction projects are economically marginal at best.

Since the global economy is addicted to energy-fueled growth, even a modest drop in fossil fuel supply – for example, the impact on global oil supplies if the US fracking industry were to crash – would have major consequences for the current economic order.

On the other hand, climate justice demands a rapid overall reduction to fossil fuel consumption, and from that standpoint subsidies aimed at maintaining current fossil fuel supply levels are counterproductive, to say the least.

As a 2015 review of subsidies put it:

“G20 country governments are providing $444 billion a year in subsidies for the production of fossil fuels. Their continued support for fossil fuel production marries bad economics with potentially disastrous consequences for the climate.” 1

This essay will consider the issue of fossil-fuel production subsidies from several angles:

  • Subsidies are becoming more important to fossil fuel producers as producers shift to unconventional oil production.
  • Many countries, including G20 countries, have paid lip service to the need to cut fossil fuel subsidies – but action has not followed.
  • Until recently most climate change mitigation policy has been focused on reducing demand, but a strong focus on reducing supply could be an important strategy for Green New Deal campaigners.

Ending subsidies to producers can play a key role in taking the fossil fuel economy off life support – or we can wait for the planet to take our civilization off life support.

Producer subsidies and the bottom line

A 2014 paper from the Oxford Centre for the Analysis of Resource Rich Economies takes a broad look at subsidization trends in many countries and over several decades. In “Into the Mire”2, Radoslav Stefanski aims to get around the problem of scarce or inconsistent data by, in his words, “a method of so-called revealed preference to back out subsidies.”

Stefanski does not focus specifically on subsidies to producers. Instead, he is concerned with inferring an overall net subsidy rate, which is the difference between subsidies aimed at either fossil fuel producers and consumers, and the taxes levied on fossil fuels at the production and consumption end.

He finds that “between 1980 and 2000 the world spent – on average – 268 billion USD (measured in 1990 PPP terms) a year on implicit fossil fuel subsidies.” Starting from the late 1990s, however – when it should have been clear that it was globally essential to begin the transition away from fossil-fuel dependence – the rate of subsidization grew rapidly in several regions.

In particular, Stefanski finds, “the vast majority of the increase comes from just two countries: China and the US.”

In North America, he says “until the 1990s the policy was fairly neutral with a slight tendency towards subsidization. Subsequently however, fossil fuel subsidies exploded and the region became the second highest subsidizing region after East Asia.”

Not only did the global price of oil see a rapid rise after 2000, but North American production saw a huge growth in production through two unconventional methods: hydraulic fracturing of oil-bearing shale, and mining of tar sands. These oil resources had been known for decades, but getting the oil out had always been too expensive for significant production.

A 2017 paper in Nature Energy shows how crucial subsidies have been in making such production increases possible.

Entitled “Effect of subsidies to fossil fuel companies on United States crude oil production”, the paper quantifies the importance of state and federal subsidies for new oil extraction projects.

The authors found that at then-current prices of about US$50 per barrel,

“tax preferences and other subsidies push nearly half of new, yet-to-be-developed oil investments into profitability, potentially increasing US oil production by 17 billion barrels over the next few decades.3

The projects that would only be profitable if current subsidies continue include roughly half of those in the largest shale oil areas, and most of the deep-sea sites in the Gulf of Mexico – all areas which have been critical in the growth of a reputed new energy superpower often referred to triumphantly as “Saudi America”.

From Erickson et al, “Effect of subsidies to fossil fuel companies on United States crude oil production”, 2017.

The authors also estimate the greenhouse gas emissions that will result from continuing these subsidies to otherwise-failing projects. In their tally, the additional carbon emissions coming from these projects would amount to 20% of the US carbon budget between now and 2050, given the widely accepted need to keep global warming to a limit of 2°C. In other words, the additional carbon emissions from US oil due to producer subsidies is far from trivial.

Extending this theme to other jurisdictions with high-cost oil – think Canada, for example – the authors of Empty Promises note “the highest cost fields that benefit most from subsidisation often have higher carbon intensity per unit of fuel produced.”4,5

The Nature Energy study is based on an oil price of US$50 per barrel, and says that subsidies may not be so important for profitability at substantially higher prices.

Another recent look at the fracking boom, however, reveals that the US fracking boom – particularly fracking for crude oil as opposed to natural gas – has been financially marginal even when prices hovered near $100 per barrel.

Bethany McLean’s book Saudi America6 is a breezy look at the US fracking industry from its origins up to 2018. Her focus is mostly financial: the profitability (or not) of the fracking industry as a whole, for individual companies, and for the financial institutions which have backed it. Her major conclusion is “The biggest reason to doubt the most breathless predictions  about America’s future as an oil and gas colossus has more to do with Wall Street than with geopolitics or geology. The fracking of oil, in particular, rests on a financial foundation that is far less secure than most people realize.” (Saudi America, page 17)

Citing the work of investment analyst David Einhorn, she writes

“Einhorn found that from 2006 to 2014, the fracking firms had spent $80 billion more than they had received from selling oil and gas. Even when oil was at $100 a barrel, none of them generated excess cash flow—in fact, in 2014, when oil was at $100 for part of the year, the group burned through $20 billion.” (Saudi America, page 54-55)

It seems sensible to think that if firms can stay solvent when their product sells for $50 per barrel, surely they must make huge profits at $100 per barrel. But it’s not that simple, McLean explains, because of the non-constant pricing of the many services that go into fracking a well.

“Service costs are cyclical, meaning that as the price of oil rises and demand for services increases, the costs rise too. As the price of oil falls and demand dwindles, service companies slash to the bone in an effort to retain what meager business there is.” (Saudi America, page 90)

In the long run, clearly, the fracking industry is not financially sustainable unless each of the essential services that make up the industry are financially sustainable. That must include, of course, the financial services that make this capital-intensive business possible.

“If it weren’t for historically low interest rates, it’s not clear there would even have been a fracking boom,” McLean writes, adding that “The fracking boom has been fueled mostly by overheated investment capital, not by cash flow.”7

These low interest rates represent opportunity to cash-strapped drillers, and they represent a huge challenge for many financial interests:

“low interest rates haven’t just meant lower borrowing costs for debt-laden companies. The lack of return elsewhere also led pension funds, which need to be able to pay retirees, to invest massive amounts of money with hedge funds that invest in high yield debt, like that of energy firms, and with private equity firms—which, in turn, shoveled money into shale companies, because in a world devoid of growth, shale at least was growing.” (Saudi America, page 91)

But if the industry as a whole is cash-flow negative, then it can’t end well for either drillers or investors, and the whole enterprise may only be able to stay afloat – even in the short term – due to producer subsidies.

Supply and demand

Many regulatory and fiscal policies designed to reduce carbon emissions have focused on reducing demand. The excellent and wide-ranging book Designing Climate Solutions by Hal Harvey et al. (reviewed here) is almost exclusively devoted to measures that will reduce fossil fuel demand – though the authors state in passing that it is important to eliminate all fossil fuel subsidies.

The authors of the Nature Energy paper on US producer subsidies note that

“How subsidies to consumers affect energy decision-making is relatively well studied, in part because these subsidies have comparatively clear impacts on price …. The impact of subsidies to fossil fuel producers on decision-making is much less well understood ….” 8

Nevertheless there has been a strong trend in climate activism to stop the expansion of fossil fuels on the supply side – think of the fossil fuel divestment movement and the movement to prevent the construction of new pipelines.

A 2018 paper in the journal Climatic Change says that policymakers too are taking another look at the importance of supply-side measures: “A key insight driving these new approaches is that the political and economic interests and institutions that underpin fossil fuel production help to perpetuate fossil fuel use and even to increase it.”9

The issue of “lock-in” is an obvious reason to stop fossil fuel production subsidies – and an obvious reason that large fossil fuel interests, including associated lending agencies and governments, work behind the scenes to retain such subsidies.

Producer subsidies create perverse incentives that will tend to maintain the market position of otherwise uneconomic fossil fuel sources. Subsidies help keep frackers alive and producing rather than filing for bankruptcy. Subsidies help finance the huge upfront costs of bringing new tar sands extraction projects on line, and then with the “sunk costs” already invested these projects are incentivized to keep pumping out oil even when they are selling it at a loss. Subsidy-enabled production can contribute to overproduction, lowering the costs of fossil fuels and making it more difficult for renewable energy technologies to compete. And subsidy-enabled production increases the “carbon entanglement” of financial services which are invested in such projects and thus have strong incentive to keep extraction going rather than leaving fossil fuel in the ground.

Carbon-entangled governments tend to be just as closely tied to big banks as they are to fossil fuel companies. Sadly, it comes as no surprise that in 2018 the G7 Fossil Fuels Subsidy Scorecard noted that “not a single G7 government has ended fiscal support or public finance to oil and gas production, with Canada providing the highest levels of support (per unit of GDP).”10

Fossil fuel producer subsidies and the Green New Deal

Major international climate change conferences have long agreed that fossil fuel subsidies must be phased out, ASAP, but little progress has been made.

The first step in getting out of a deep hole is to stop digging, and at this point in our climate crisis it seems crazy or criminal to keep digging the hole of fossil fuel lock-in by subsidizing new extraction projects.

Many major fossil fuel corporations have expressed their support for carbon taxes as a preferred method of addressing the climate change challenge. I am not aware, however, of such corporate leaders advocating the simpler and more obvious approach of removing all fossil fuel subsidies.

Perhaps this is because they know that carbon taxes almost always start out too small to make much difference, and that every attempt to raise them will stir intense opposition from lower- and middle-income consumers who feel the bite of such taxes most directly.

The costs of producer subsidies, on the other hand, are spread across the entire population, while the benefits are concentrated very effectively among fossil fuel corporations and their financial backers. And by boosting the supply of fossil fuels, especially oil, to a level that could not be maintained under “free market” requirements for profitability, these subsidies maintain the hope of continuous economic growth based on supposedly cheap energy.

The sudden popularity of “Green New Deal” ideas in several countries raises essential questions about political strategy. There is no single silver bullet, and a range of political and economic changes will need to be made. Though one major goal – eliminate most fossil fuel use by about 2030 and the rest by 2050 – is simple and clear, there are many means to move towards that goal, not all of them equally effective or equally feasible.

A swift elimination of producer subsidies, and a redirection of those funds to employment retraining and rehiring in renewable energy projects, strikes me as a potential political winner. Major fossil fuel interests, including big investment firms, can be counted on to oppose such a shift, of course – but they have shown themselves to be determined lobbyists for the preservation of the fossil fuel economy anyway.

Among the overwhelming majority of voters without big financial portfolios, the cessation of handouts to corporations strikes me as an easier sell than carbon taxes levied directly and regressively on consumers.


Photo at top: port of IJmuiden, Netherlands, September 2018.


Footnotes

1 Empty Promises: G20 subsidies to oil, gas and coal production, published by Overseas Development Institute and Oilchange International, 2015, page 11

2 “Into the Mire: A closer look at fossil fuel subsidies”, by Radoslav Stefanski, 2014.

3 Peter Erickson, Adrian Down, Michael Lazarus and Doug Koplow, “Effect of subsidies to fossil fuel companies on United States crude oil production”, Nature Energy 2, pages 891-898 (2017).

4 Empty Promises: G20 subsidies to oil, gas and coal production, published by Overseas Development Institute and Oilchange International, 2015, page 17

The same hurdles to unsubsidized profitability apparently apply outside of North America. See, for example, this article detailing how major fracking ventures in Argentina are likely to stall or fail due to declining subsidies: “IEEFA report: Argentina’s Vaca Muerta Patagonia fracking plan is financially risky, fiscally perilous”, March 21, 2019

 Saudi America: The Truth About Fracking and How It’s Changing the World, by Bethany McLean. Columbia Global Reports, 2018.

McLean’s reading echoes the analysis in the 2017 book Oil and the Western Economic Crisis, by Cambridge University economist Helen Thompson.

Peter Erickson, Adrian Down, Michael Lazarus and Doug Koplow, “Effect of subsidies to fossil fuel companies on United States crude oil production”, Nature Energy 2, pages 891-898 (2017).

Michael Lazarus and Harro van Asselt, “Fossil fuel supply and climate policy: exploring the road less taken,” Climatic Change, August 2018, page 1

10 G7 Fossil Fuels Subsidy Scorecard, Overseas Development Institute, Oilchange International, NRDC, IISD, June 2018, page 9

Designing Climate Solutions – a big-picture view that doesn’t skimp on details

Also published at Resilience.org

Let us pause for a moment of thanks to the policy wonks, who work within the limitations of whatever is currently politically permissible and take important steps forward in their branches of bureaucracy.

Let us also give thanks to those who cannot work within those limitations, and who are determined to transform what is and is not politically permissible.

Designing Climate Solutions: A Policy Guide for Low-Carbon Energy is published by Island Press, November 2018.

An excellent new book from Island Press makes clear that both approaches to the challenge of climate disruption are necessary, though it deals almost exclusively with the work of policy design and implementation.

Designing Climate Solutions, by Hal Harvey with Robbie Orvis and Jeffrey Rissman, is a thoughtful and thorough discussion of policy options aimed at reducing greenhouse gas emissions.

Harvey is particularly focused on discovering which specific policies are likely to have the biggest – and equally important, the quickest – impact on our cumulative greenhouse gas emissions. But he also pays close attention to the fine details of policy design which, if ignored, can cause the best-intentioned policies to miss their potentials.

One of the many strengths of the book is the wealth of graphics which present complex information in visually effective formats.

A political acceptable baseline

Though political wrangling is barely discussed, Harvey notes that “It goes without saying that a key consideration of any climate policy is whether it stands a chance of being enacted. A highly abating and perfectly designed policy is not worth pursuing if there is no chance it can be implemented.”

He takes as a starting point the target of the Paris Agreement of 2015, which has received agreement in principle from nearly all countries: to reduce emissions enough by 2050 to give us at least a 50% chance of avoiding more than 2°C global warming. (We’ll return later to the question of the reasonableness of that goal.)

Throughout the book, then, different aspects of climate policy are evaluated for their relative contributions to the 2°C goal.

Working with a climate policy computer model which is discussed in detail in an appendix and which is available online, Harvey presents this framework: a “business as usual” scenario would result in emissions of 2,253 Gigatons of CO2-equivalent from 2020 to 2050, but that must be reduced by 1,185 Gigatons.

The following chart presents what Harvey’s team believes is the realistic contribution of various sectors to the emission-reduction goal.

“Figure 3.4 – Policy contributions to meeting the 2°C global warming target.” (From Hal Harvey et. al., Designing Climate Solutions, Island Press, page 67)

The key point from this chart is that about 70% of the reductions are projected to come in three broad areas: changes to industrial production, conversion of electrical generation (“power sector”) to renewable energy, and cross-sector pricing of carbon emissions in line with their true social costs.

(The way things are categorized makes a big difference. For example, agriculture is slotted as a subset of the industrial sector, which boosts the relative importance of this sector for emissions-reduction potential.)

Harvey buttresses the argument by looking at the costs – or in many cases, cost-savings – of emissions-reduction policies. The following chart shows the relative costs of policies on the vertical dimension, and their relative contribution to emissions reduction on the horizontal dimension.

“Figure 3.2 – The policy cost curve shows the cost-effectiveness and emission reduction potential of different policies.” (From Hal Harvey et. al., Designing Climate Solutions, Island Press, page 59)

 

The data portrayed in this chart can guide policy in two important ways: policy-makers can focus on the areas which make the most difference in emissions, while also being mindful of the cost issues that can be so important in getting political buy-in.

It may come as a surprise that the transportation and building sectors, in this framework, are responsible for only small slices of overall emission reductions.

Building Codes and Appliance Standards are pegged to contribute about 5% of the emission reductions, while a suite of transportation policies could together contribute about 7% of emission reductions.

A clear view of the overriding importance of reducing cumulative emissions by 2050 helps explain these seemingly small contributions – and why it would nevertheless be a mistake to neglect these sectors.

To achieve climate policy goals it’s critical to reduce emissions quickly – and that’s hard to do in the building and transportation sectors. Building stock tends to last for generations, and major appliances typically last 10 years or more. Likewise car, truck and bus fleets tend to stay on the road for ten years or more. Thus the best building codes and the best standards for vehicle efficiency will have a very limited impact on carbon emissions over the next 15 years. By the same token, even the most rapid electrification possible of car and truck fleets won’t have full impact on emissions until the electric grid is generally decarbonized.

These are among the reasons that decarbonizing the electric grid, along with cross-sector pricing of carbon emissions, are so important to emissions reduction in the short term.

Meanwhile, though, it is also essential to get on with the slower work of upgrading buildings, appliances, transportation systems, and decarbonized agricultural and industrial processes. In the longer term, especially after 2050 when it will be essential to achieve zero net carbon emissions, even (relatively) minor contributions to emissions will be important. But as Harvey puts it, “There is no mopping up the last 10 percent of carbon emissions if we don’t eliminate the first 90 percent!”

International case studies

Harvey gets deep into the nuances of policy with an excellent discussion of the differences between carbon taxes and carbon caps. This helps readers to understand the value of hybrid approaches, and the importance in some countries of policies to limit “leakage”, whereby major industries simply shift production to jurisdictions without carbon prices or caps.

The many case studies – from the US, Germany, China, Japan, and other countries – illustrate policy designs that work especially well, or conversely, policies that have resulted in unintentional consequences which reduce their effectiveness.

These case studies also provide a reminder of the amount of hard work and dedication that mostly unsung bureaucrats have put in to the cause of mitigating climate disruption. As much as we may mourn that political leadership has been sorely lacking and that we appear to be losing the battle to forestall climate disaster, it seems undeniable that we would be considerably worse off if it weren’t for the accomplishments of civil servants who have eked out small gains in their own sectors.

For example, the hard-won feed-in tariffs and other policies promoting renewable energies for electric generation haven’t yet resulted in a wholesale transformation of the grid – but they’ve resulted in an exponential drop in the cost per kilowatt of solar- and wind-generated power. Performance standards for many types of engines have resulted in significant improvements in energy efficiency. These improvements have so far mostly been offset by our economy’s furious push to sell more and bigger products – but these efficiency gains could nevertheless play a key role in a sane economic system of the future.

The 2° gamble

Although most of the book is devoted to details of particular policies, Harvey’s admirably lucid discussion of the urgency of the climate challenge makes clear that we need far greater commitment from the highest levels of political leadership.

He notes that the reality of climate action has been far less impressive than the high-minded rhetoric. With few exceptions the nations responsible for most of the carbon emissions have been woefully slow to act, which makes the challenge both more urgent and more difficult.

Harvey illustrates this point with the chart below. The black solid and dotted lines represent the necessary progress with emissions, if we had been smart enough to ensure emissions peaked in 2015. The red lines show what may now be the best-case scenario – an emissions peak in 2030 – and the much more drastic reductions that will then be required to have a 50% chance of keeping global warming to 2°C or less.

“Figure I-7. The longer the delay in peaking emissions, the harder it becomes to meet the same carbon budget.” (From Hal Harvey et. al., Designing Climate Solutions, Island Press, page 9)

We might well ask if a 50% likelihood of worldwide climate catastrophe is a prudent and reasonable policy aim, or certifiably bonkers. Still, a 50/50 chance of disaster is somewhat better than assured civilizational collapse, which is the destination of “business as usual.”

In any case, the political climate has changed considerably in the short time since Harvey and colleagues prepared Designing Climate Solutions. With the challenge to the political status quo embodied in the Green New Deal movement, it now seems plausible that some major carbon-emitting countries will enact more appropriate greenhouse-gas emission targets in the next few years. If that comes to pass, these new goals will need to be translated into effective policy, and the many lessons in Designing Climate Solutions will remain important.

What about fossil fuel subsidies?

In a book of such wide and ambitious scope, it is inevitable that some important facets are omitted or given short shrift.

The issues of deforestation and forest degradation are duly noted, but Harvey declines to delve into this subject by explaining that “The science, the policies, and the actors for reducing emissions from land use are very different from those for energy and industrial processes, and they deserve separate treatment from experts in land use policy.”

The issue of embodied carbon does not come up in the text. In assessing the replacement of fossil-powered vehicle fleets by electric vehicles, for example, is the embodied carbon inherent in current manufacturing processes a significant factor? Readers will need to search elsewhere for that answer.

Also noteworthy is the absence of any acknowledgement that economic growth itself may be a problem. For all the discussion of ways to transform industrial processes, there is no discussion of whether the scale of industrial output should also be reduced. In most countries today, of course, a civil servant who tries to promote degrowth will soon become an expert in unemployment, but that highlights the need for a wider and deeper look at economic fundamentals than is currently politically permissible.

The missing subject that seems most germane to the book’s central purpose, though, is the issue of subsidies for fossil fuels. Harvey does state in passing that “for many sectors and technologies, pricing is the key. Removing subsidies for fossil fuels is the first step – though still widely ignored.” Indeed, many countries have paid lip service to the need to stop subsidizing fossil fuels, but few have taken action along these lines.

But throughout Harvey’s extensive examination of pricing signals – e.g., feed-in tariffs, carbon taxes, carbon caps, low-interest loans to renewable energy projects – there is no discussion of the degree to which existing fossil fuel subsidies continue to undercut the goals of climate policy and retard the transition to a low-carbon economy.

In my next post I’ll take up this subject with a look at how some governments, while tepidly supporting the transformation envisioned in the Paris Agreements, continue to safeguard their fossil fuel sectors through generous subsidies.


Illustration at top adapted from Designing Climate Solutions cover by David Ter Avanesyan.

The clean green pipeline machine – a free-market fairy tale

A review of Donald Gutstein’s The Big Stall

Also published at Resilience.org

In late 2016 Canadian Prime Minister Justin Trudeau was ready to spell out his government’s “Pan-Canadian Framework on Clean Growth and Climate Change”. His pitch to Canadians went along these lines:

We recognize that climate change is a serious challenge and that we must transition to a new economy which dramatically cuts carbon emissions. To make this transition we need a strong economy and a united country. To have a strong economy we must allow our fossil fuel sector to continue to grow. And to keep our country united while we impose a modest price on carbon, we must also build new pipelines so that oil sands extraction can grow. That is why my government is proud to lead the way in reducing carbon emissions, by ensuring that the oil sands sector emits more carbon.

If you think that sounds absurd, then you’re likely not part of Canada’s financial, industrial, political or media elite, who for the most part applauded both the minimal carbon tax and the substantial oil sands expansions being pushed by Trudeau and by Alberta Premier Rachel Notley.

How did we get to a point where oil companies and governments are accepted as partners in devising climate action plans? And why did these climate action plans, decade after decade, permit fossil fuel companies to continue with business as usual, while carbon emissions grew steadily?

This is the subject of Donald Gutstein’s new book The Big Stall: How Big Oil and Think Tanks are Blocking Action on Climate Change in Canada. (James Lorimer & Co., Toronto, October 2018)

Though Gutstein takes a deep dive into Canadian politics, industry and academia, much of his story also concerns the series of international conferences which attempted, with very little success, to come up with strong international solutions for a climate crisis that knows no borders. Thus The Big Stall has relevance to climate change campaigners in many countries.

By the early 1990s, Gutstein says, the pervasive influence of neoliberal economic theory was leading to “a silent corporate takeover of the United Nations Framework Convention on Climate Change”.

Neoliberal theory said that the “free market”, not government, should be relied on to solve the problem of climate change. That suited the oil industry, because the one thing they feared most was a hard-and-fast regulatory limit on carbon emissions.

An ad for tourism in the Canadian Rockies, perhaps? Not so – this is a still from the Alberta government’s tv ad series with the tagline “The TransMountain Pipeline is on  Canada’s side.” At keepcanadaworking.ca.

Lessons from Big Tobacco

In common with many other historians, Gutstein pays close attention to the strong links between public relations campaigns used by the tobacco industry and the similar strategies employed by Big Oil, particularly in sowing public confusion about the scientific consensus.

But as Gutstein’s book makes clear, the mainstream environmental movement failed to absorb a key lesson from the decades-long struggle to combat tobacco addiction: the industry whose products are the root of the problem should not be relied on to devise solutions.

Corporate participation in COP21 [Paris 2015] and in the conferences and talks leading up to and following it stands in stark contrast with the corporate role in the World Health Organization’s Framework Convention on Tobacco Control. There, tobacco interests are excluded, a fact which helps explain that treaty’s rapid progress in curtailing tobacco use. … At the climate talks, in sharp contrast, there is no conflict between Big Oil’s interests and public health and environmental interests. The corporate sector succeeded in making itself integral to the process.” (The Big Stall, page 158-159)

Fossil fuel interests assured their seat at the table in part by sponsoring the negotiations. In Paris in 2015, Gutstein writes,

Big Oil even partly financed the talks. France could have easily paid the C$255-million cost, but by allowing corporations to contribute 20 per cent, the host country encouraged the private sector to be part of the inner circle that was planning and organizing the event.” (The Big Stall, page 160)

The result was that in spite of inspiring rhetoric and lofty goals, the Paris Agreement contained no binding emissions reduction requirements. Instead countries were free to make their own reduction “pledges” with no penalties for missing their targets. This result was perfectly predictable, Gutstein says: “Paris was guided to its inevitable conclusion by the veiled hand of Big Oil and its corporate and political allies.” (The Big Stall, page 155)

He traces the pattern of corporate influence over climate negotiations back to the role of Canadian businessman Maurice Strong at the 1992 Rio Summit, and former Norwegian Prime Minister Gro Brundtland at the eponymous Brundtland Commission in the 1980s.

Brundtland helped popularize the phrase “sustainable development” – a phrase which Gutstein says has come to mean little beyond sustaining the profits and asset values of major corporations. Thus fossil fuel interests can forge ahead with plans to extract even more nonrenewable resources while forestalling international action to reduce carbon emissions – and then sign declarations of support for “sustainable development”.

An ad for Wind Turbines? Flowers? Puppies? Kites? None of the above – this is a still from an Alberta government tv spot promoting the TransMountain Pipeline expansion, which is intended to double the amount of bitumen exported through the Port of Vancouver.

To tax or not to tax carbon

The story gets complicated, of course, because corporate figures do not always agree on the best ways to protect their bottom lines, and sometimes they respond to changing political winds in different ways.

Gutstein covers these shifts in corporate spin in great detail. Put simply, major fossil fuel interests went from denying that there was any scientific consensus on the reality or cause of global warming, to support for carbon-emissions trading markets, to support for a modest carbon tax.

In Canada in particular, a carbon tax was seen as a necessary concession to strong public concern that Canada wasn’t doing its part to mitigate global warming. Recognizing that the oil sands had a terrible reputation around the globe, oil interests hoped they could earn public favour by supporting a carbon tax. And politicians including Justin Trudeau pitched the carbon tax as an integral part of an indivisible package: we need to tax carbon to reduce emissions, while at the same time building new pipelines to ensure that oil sands extraction continues to grow.1

The common element in all of these fossil fuel corporation strategies is that there must not be any strict regulatory limit on carbon emissions – we must trust “the market”, in all its infinite wisdom, to arrive at emissions reductions. (When fossil fuel interests want subsidies, or need government help to get their products to market, then of course it is quite alright to deviate from free market principles.)

Gutstein makes clear that the level of carbon taxes advocated by fossil fuel interests is far too low to have a significant impact either on their profits or on national carbon emissions. Likewise, he says, the imposition of carbon taxes alone cannot substitute for the wide range of regulatory measures and incentives needed to make a rapid transition away from a fossil fuel economy. But he leaves unanswered another question: does he think carbon taxes could play an important role if they were set high enough to be effective, and were part of an appropriate package of other rules and incentives? In other words, if our political parties move beyond their fealty to neoliberal free-market ideology, should they enact effective carbon taxes?

The final corporate PR strategy that Gutstein discusses is the trend for fossil fuel companies to embrace the “market opportunity” of leading the transition to new energy systems. By publicizing their corporate efforts to buy wind turbines, study battery technology, or build heavily-subsidized prototypes of carbon-capture-and-sequestration plants, fossil fuel companies would like us to believe they are leading the way into a clean green future. But the important action happens behind the scenes, as fossil fuel companies continue to fight against any effective and compulsory limits on carbon emissions.

A clean green future? Major graphics in this article are stills from an Alberta-government funded tv ad series promoting the TransMountain Pipeline expansion. The ads do not show images of pipelines, tar sands open-pit mines, tailings ponds or refineries – just prosperous people and unspoiled environments. (At keepcanadaworking.ca.) Since the ads are paid for by a provincial government, and the TransMountain Pipeline is now owned by the federal government, fossil fuel industry adherence to “free market” principles can be flexible indeed.


FOOTNOTES

By the time The Big Stall was published, Trudeau’s grand bargain was in danger of failing on both fronts. Court cases and business decisions had delayed or cancelled most of the pending pipelines that would facilitate oil sands expansion. In the meantime the minimal carbon tax Trudeau has promised has been dubbed the “job-killing carbon tax” by the new Premier of Ontario and the federal Conservative Party, and the scheduled tax is now vehemently opposed by provincial leaders in about half of the country.

Quantifying climate hypocrisy – the Canada file

Also published at Resilience.org

Which nation shows greater hypocrisy in the struggle to limit climate change – the United States or Canada?

The US President, of course, misses no opportunity to dismiss scientific consensus, downplay the dangers of climate change, and promote fossil fuel use.

Canada’s Prime Minister, on the other hand, has been consistent in stating that the scientific consensus is undeniable, the danger is clear, and Canada must step up to the challenge of drastic carbon emissions reductions.

It was within the first few weeks of the Justin Trudeau administration that Canada surprised most observers by backing a call from island nations to hold global warming to 1.5°C, as opposed to the 2°C warming threshold that had been a more widely accepted official goal.1

Yet according to a new peer-reviewed study2 of countries’ pledged emissions reduction commitments following the Paris Agreement, Canada’s level of commitment would result in 5.1°C of global warming if all countries followed the same approach to carbon emissions. In this tally of the potential effects of national climate commitments, Canada ranks with the worst of the worst, a select club that also includes Russia, China, New Zealand and Argentina.

The actual carbon emissions policies of the US would result in a lesser degree of total calamity –  4°C of warming – if followed by all countries.

Behind this discrepancy between Canada’s professed goals and its actual policy is the lack of a global agreement on a fair method for allocating the remaining carbon emissions budget.

The Paris Agreement set a target for the limitation of global warming, and it was (relatively) straightforward to calculate how much more carbon can be emitted without blowing through that warming target. But countries remained free to decide for themselves what principles to follow in determining their fare share of emissions reductions.

The result?

Developed countries who committed to take the lead in reducing emissions and mobilizing finance for developing countries often submitted NDCs [Nationally Determined Contributions] that do not match the concepts of equity that they publicly supported.” (du Pont and Meinshausen, “Warming assessment of the bottom-up Paris Agreement emissions pledges”, Nature Communications.)

A fair way to count to 10

An old joke provides a good analogy for the slipperiness inherent in divvying up the global carbon budget. (My apologies to accountants everywhere, especially the one who first told me this joke.)

You ask a mathematician, “how much is 3 + 3 + 4?” She punches the numbers into her calculator, and tells you “3 + 3 + 4 is 10”.

But when you ask an accountant “how much is 3 + 3 + 4?” he sidles up and whispers in your ear, “How much do you want it to be?”

Though climate scientists can provide a simple number for how much additional carbon can be emitted globally before we hit our agreed-on warming threshold, each country’s ruling party decides for themselves how much they want their share of that carbon budget to be.

And the radically different circumstances of countries has resulted in radically different positions on what is fair.

A 2016 study published in Nature gives us insight into Canada’s position.

Entitled “Global mismatch between greenhouse gas emissions and the burden of climate change”, the study categorizes countries into how drastically and immediately they are hit by the effects of climate change. While all countries are already being impacted, the study found that Canada is among the 20% of countries who are suffering least from climate change.

Countries are also categorized according to their responsibility for climate change, and Canada is among the 20% who have contributed the most (on a per capita basis) in causing climate change.

In economic terms, those who do most to cause climate change while suffering the least damage from climate change are “free riders”. Those who do the least to cause climate change, but suffer the most from it, are “forced riders”.

The study shows that Canada is among the 20 “free riders” now, and will still be one of 16 “free riders” in 2030. The “forced riders” in both 2010 and 2030 include many African countries and small island nations. (Yes, that would be the same island nations that Canada claimed to be backing in 2015 in the call to adopt a 1.5°C warming threshold.)

“Figure 1. Global inequity in the responsibility for climate change and the burden of its impacts” in “Global mismatch between greenhouse gas emissions and the burden of climate change”, by Glenn Althor, James E. M. Watson and Richard A. Fuller, Nature, 5 February 2016. Countries shown in dark brown are in the highest quintile in emissions and in the lowest quintile of vulnerability to climate change. Countries in dark green are in the lowest quintile of emissions, but in the highest quintile of vulnerability. The top map shows this mismatch in 2010, the bottom map the projected mismatch in 2030.

Is there evidence that the “free riders” are trying to maintain their free-riding status as long as possible? According to du Pont, Meinshausen and their research colleagues, the answer is yes: most countries have set carbon emissions commitments that reflect their immediate self-interests. In the case of the major fossil fuel producers and consumers, that means the sum of their commitments adds up to a woefully inadequate global carbon emissions reduction.

An equity framework that dares not speak its name

In their discussion of the emissions reductions pledges made by nations following the Paris Agreement, du Pont and Meinshausen try to match these pledges with various approaches to equity. They note that the Intergovernmental Panel on Climate Change (IPCC) has listed five major equity frameworks. These frameworks are summarized in this table from an earlier paper:

Source: “Equitable mitigation to achieve the Paris Agreement goals”, by Yann Robiou du Pont, M. Louise Jeffery, Johannes Gütschow, Joeri Rogelj, Peter Christoff, and Malte Meinshausen, Nature, 19 December 2016

Of particular interest for our purposes is the final entry, CER or “Constant emissions ratio”. This has been defined as

[maintaining] current emissions ratios (‘constant emissions ratio’, or CER), so that each country continues to emit the same share of global emissions as it does at the moment, even as the total volume is cranked down.”3

In other words, those who have emitted an outsize share of carbon in the past get to preserve an outsize share of a shrinking pie in future, while those who have emitted very little carbon to date are restricted even more drastically in future.

If that sounds anything but fair to you, you are not alone. Du Pont and Meinshausen say the Constant Emissions Ratio “is considered unfair and not openly supported by any country.”

Yet when they looked at the Nationally Determined Contributions following the Paris Agreement, they found that the Constant Emissions Ratio “implicitly matches many developed countries’ targets”.

The Constant Emissions Ratio framework for these countries would be the least stringent of the IPCC’s equity frameworks – that is, it would impose the smallest and slowest cuts in carbon emissions.

In the case of Canada and other members of the climate rogues gallery, their post-Paris commitments turn out to be even weaker than commitments calculated by the Constant Emissions Ratio method.

Former ExxonMobil CEO and US Secretary of State Rex Tillerson with Canadian Prime Minister Justin Trudeau.

Follow the money

Let’s take a closer look at some of the Nationally Determined Contributions – individual nations’ commitments towards the global goal of rapid decarbonization.

“Selected Country Pledges Under the Paris Agreement and GHG Emissions”, from “The Paris Agreement on Climate Change”, by Radoslav Dimitrov, published by University of Western Ontario, March 2018.

Canada’s commitment ranks among the weakest of this lot for three reasons. First, the Reduction Target of 30% is near the low end of the scale, with several other industrial economies pledged to Reduction Targets of 40% or more. Second, the Target Year for achievement of the Reduction, 2030, is five years beyond the US and Brazil Target Dates of 2025. This matters, because every year that we continue to emit high amounts of carbon makes it that much more difficult to forestall catastrophic climate change.

Third, the Base Year is also very significant, and on this measure Canada also ranks with the poorest commitments. The European Union, for example, pledges to reduce from a Base Year of 1990, while Canada will work from a Base Year of 2005.

Between 1990 and 2005, Canada’s greenhouse-gas emissions rose 25%,4 and so if Canada’s emissions in 2030 are 30% lower than in 2005, that is only about a 12% reduction compared to 1990.

Canada’s national government claims to understand that swift and dramatic action must be taken to reduce carbon emissions. So why would this government then commit to only a 12% emissions reduction, compared to 1990, as a target for 2030? Let’s follow the money, with a quick look at the relative influence of the fossil fuel industry in Canada.

Radoslav Dimitrov writes

the energy sector (oil, gas and electricity) is important to the Canadian economy, accounting for approximately 10% of national GDP in 2016, more than a quarter of public and private investment, and approximately 29% of exports.”5

Notably absent in the above paragraph is employment. Natural Resources Canada says that in 2017, only 5% of employment was either directly or indirectly within the energy sector, and that includes the electricity sector.6

Both of Canada’s traditional ruling parties like to talk about their commitment to “good middle-class jobs”. But given the scale of the environmental crisis we face, how big a challenge would it be to fund an immediate job retraining and investment program to start replacing fossil fuel jobs with renewable energy jobs? Couldn’t a committed government-and-industry program find new “middle-class jobs” for 3% or 4% of the working-age population?

I think the answer is yes … but as for capital investment, that’s another story. The fossil fuel industry accounts for closer to 25% of Canadian investment, and an immediate and sustained push to reduce the output of carbon-intensive fuels would result in a dramatic and immediate drop in the stock-market value of fossil-fuel corporations.  Those stocks are a big part of the portfolios of most people in Canada’s stock-owning class.

Alberta Premier Rachel Notley and Canadian Prime Minister Justin Trudeau

A two-pronged strategy which starts with “dig the hole deeper”

Since before his election as national leader, Canadian Prime Minister Justin Trudeau has proclaimed the need to “balance the environment and the economy”. What has this meant in practice?

As the industry-friendly Financial Post put it in 2015,

The encouraging news — at least from the perspective of the energy sector — is that Mr. Trudeau seems onside with continued oil industry expansion and that his climate change program aims to support it rather than contain it.”7

Part of Trudeau’s program was a commitment to establishing a modest national price on carbon. He found a prominent early ally in an unlikely location, Alberta. There the NDP Premier Rachel Notley not only implemented a carbon price, but also announced a cap on carbon emissions from Alberta’s oil and gas sector.

Notably, however, that cap will start to reduce tar sands emissions only in 2030, and in the meantime emissions from that sector are projected to rise 50%, from 66 megatonnes/year to 100 megatonnes.

The Alberta plan thus mirrors Trudeau’s national policy. While championing a modest carbon tax, the Prime Minister has consistently pushed for the construction of major new pipelines – and the business case for these pipelines is that they are essential in the expansion of tar sands extraction.

On this front, at least, Trudeau is willing to put our money where his mouth is. Last summer, the Trudeau government invested $4.5 billion to buy the TransMountain Pipeline, with the prospect of spending at least several billion more in a much delayed project designed to almost triple the line’s bitumen-carrying capacity.

Meanwhile a national price on carbon emissions of $20/tonne is scheduled to be implemented in January 2019, rising to $50/tonne in 2022. While most environmentalists see this as a positive step, they also believe the price needs to be much higher if it is to result in dramatic emission reductions.

Setting a low bar and failing to clear it

As we have seen, the Nationally Determined Contribution that Canada has offered in response to the Paris Agreement is one of the world’s weakest.

The evidence to date suggests that Canada is on track to miss its own low target. Canada’s Environment Commissioner Julie Gelfand concluded in March 2018 that Canada is making little progress and will miss its 2030 targets unless both the federal and provincial governments step up the pace.8 And just this week, the UN Environment Program said that Canada is on track to miss its emissions targets for both 2020 and 2030.9

That should come as no surprise: it’s hard to cut national emissions by 30%, when you’re also fully committed to the continued rapid expansion of the country’s most carbon-intensive industrial sector – tar sands extraction.

Photo credits: all photos are publicity photos released by the Prime Minister’s Office, Canada, taken by Adam Scotti, accessed at https://pm.gc.ca/eng/photos.


References

1  “Catherine McKenna pushes for 1.5 C target in Paris climate talks”, Globe & Mail, December 6, 2015

2  “Warming assessment of the bottom-up Paris Agreement emissions pledges”, by Yann Roubiou du Pont and Malte Meinshausen, Nature Communications, accessed at https://www.nature.com/articles/s41467-018-07223-9.pdf

3  In “US trying harder on climate change than ‘unambitious’ China, says study”, CarbonBrief, 20 December 2016

4  “Canada’s greenhouse-gas emissions rose sharply between 1990 and 2005: study”, April 22, 2008, accessed at CBC News.

5  “Selected Country Pledges Under the Paris Agreement and GHG Emissions”, from “The Paris Agreement on Climate Change”, by Radoslav Dimitrov, published by University of Western Ontario, March 2018.

6  “Energy and the economy”, on the Natural Resources Canada website, accessed Nov 28 2018.

7  “Justin Trudeau aims to strike balance between environment, economy with carbon policy”, Financial Post, February 6, 2015

8  “Canada, provinces lack clear plan to adapt to climate change, auditors say”, by Mia Rabson, Canadian Press, 27 March 2018

9  “Canada set to miss C02 emissions target, UN says,” in Toronto Star, 28 November 2018, accessed in Pressreader.

Can nuclear power extend the economic expansion?

Also published at Resilience.org and BiophysEco.

Richard Rhodes’ new book Energy: A Human History does an excellent job of describing the scientific and technological hurdles that had to be cleared in the development of, for example, an internal combustion engine which can convert refined petroleum into forward motion.

But he gives short shrift to the social and political forces that have been equally important in determining how technological advances shape our world. That internal combustion engine might be a wonder of ingenuity, but was there any scientific reason we should make multi-tonne vehicles the primary mode of transportation for single passengers in cities, drastically reconfiguring urban landscapes in the process? When assiduous research resulted in more efficient engines, did science also dictate that we should use those engines to drive bigger and heavier SUV’s, and then four-wheel-drive, four-door pick-up trucks, to our suburban grocery superstores?

Unfortunately, Rhodes presents the benefits of modern science as if they are all inextricably wrapped up in our current high-energy-consumption economy, implying that human prosperity must end unless we find ways to maintain this high-energy system.

In this second part of a look at Energy (first installment here), we’ll delve into these questions as they relate to Rhodes’ strident defense of nuclear power.

To set the context, Rhodes argues that the only realistic – and the most ethical – way forward is a gradual progression on the path we are already taking, and that means an “all energy sources except coal and oil” strategy:

“Every energy system has its advantages and disadvantages …. And given the scale of global warming and human development, we will need them all if we are to finish the centuries-long process of decarbonizing our energy supply – wind, solar, hydro, nuclear, natural gas.”1

Three key points here: First, Rhodes recognizes the severity and urgency of the climate problem.

Second, he believes we have been “decarbonizing our energy supply” for centuries. That is true with respect to intensity: we now release fewer units of carbon for each unit of energy than we did in the 19th century.2 But in an overall sense, we emit vastly more carbon cumulatively (and vastly more carbon per capita) than we used to. It is the overall carbon emissions, not the carbon/energy intensity ratio, that matters to the climate.

Third, while energy production via natural gas has relatively low carbon emissions at the point of combustion, there is wide recognition that methane leaks throughout the production/transmission chain are major sources of greenhouse gas emissions, which may counteract the benefits of switching from coal to gas. Rhodes makes only an oblique reference to this critical problem in current natural gas usage.

It’s the issue of nuclear power, though, that really brings out Rhodes’ rhetorical heat. Consider this ad hominem attack:

“Antinuclear activists, whose agendas originated in a misinformed neo-Malthusian foreboding of overpopulation (and a willingness at the margin to condemn millions of their fellow human beings to death from disease and starvation), may fairly be accused of disingenuousness in their successive arguments against the safest, least polluting, least warming, and most reliable energy source humanity has yet devised.3

If someone warns that a social or technological development is likely to result in mass death, does that logically mean they want mass death, or that they are indifferent to it? Obviously not. They may well be sincerely motivated by a desire to save lives – just as those who promote the same social or technological development might sincerely believe that is the best way to save lives and promote prosperity.

So I think it is Rhodes who is being disingenuous with his ad hominem argument – even though I happen to agree with some of his substantive points on the relative safety of nuclear power.

What could go wrong?

As one who has lived for fifteen years just downwind of major nuclear facilities – first a uranium processing plant, more recently a nuclear power generator – I’ve had lots of incentive to study the potential safety hazards of the nuclear power industry. And on the issue of the relative operating safety of nuclear power generation, my conclusions have been much the same as those Rhodes puts forth.

I frequently take a short bike ride along the Lake Ontario Waterfront Trail through the buffer zone around the Darlington Nuclear Generating Station. Is this a significant hazard to my health? Yes it is, but only because this route also requires me to share the road with trucks and cars for a few kilometers, and to ride right beside a stream of pollution-emitting traffic on Ontario’s busiest expressway.

As a close neighbour of nuclear facilities, my risk of death due to sudden catastrophic nuclear power accident is several orders of magnitude lower than my risk of death due to sudden catastrophic traffic accident. (Worldwide, well over a million people are killed in traffic accidents per year.4)

As for the health risk due to chronic exposure to the amounts of radiation that are emitted by a current Canadian nuclear generating plant, I fully concur with Rhodes’ more general conclusion: “Low doses of radiation are not only low risk; they’re also lost in the noise of other sources of environmental insult.”5

Likewise, I share Rhodes’ conclusion that shutting down our existing nuclear power plants for environmental reasons, while continuing to rely on coal for a significant part of electricity generation, is daft6 – we should replace carbon-emitting generating systems first.

In my region, I would be sorry to see Darlington Nuclear Station shut down if Ontario were still significantly reliant on gas-powered peaker plants, as it is now. And given that we have a very long way to go in electrifying personal transportation and home heating, our electricity demand may increase significantly, making the transition to a fully renewable electricity generation system that much farther down the road. In that context, I think our existing nuclear power plants are a better option environmentally than continued or increasing use of any fossil fuel, natural gas included, for generation of electricity.

But should we commission and build new nuclear power plants? That is a very different question. Rhodes recognizes that the economic viability of the nuclear power industry is very much in question, but he makes no significant attempt in Energy to resolve the economic question.

To adequately answer the economic viability question, we would need a much wider conception of science than the one that comes through in Rhodes’ book.7

Beyond physics and chemistry

The science Rhodes celebrates in Energy: A Human History falls almost entirely within very basic physics and chemistry. The discoveries and developments Rhodes discusses are highly significant, and they will always remain foundational – but they are not sufficient for a clear understanding of technological systems, which are also social phenomena.

A more recent scientific advance is essential in coming to grips with our current energy challenges. This is the concept of Energy Return on Investment (EROI). Over his long and distinguished career, ecologist Charles A.S. Hall posited that organisms, ecological communities, and human societies must derive more usable energy from their activities than the energy they invest in those activities. With this simple insight8, Hall gave economics a foundation in the very principles of thermodynamics that Rhodes reveres.

The resulting field of biophysical economics provides a deeper understanding of the socio-technological revolutions that Rhodes simply ascribes to “science”. After studying the Energy Return on Investment of major energy sources over the past 200 years, we can understand how the rapid exploitation of fossil fuels provided a huge boost in the the energy available to society, while simultaneously freeing the great majority of people from energy-procuring activities so that they could work instead at a wide variety of new activities and industries. We can understand that if any society is to use a high quantity of energy per person, while employing only a small number of people in its energy sector, then its energy sector needs a high rate of Energy Return on Investment.

With readily accessible supplies of coal, oil and natural gas, industrial civilization in the past 200 years has benefitted from a very high Energy Return on Investment. But with “sweet spots” exhausted or in depletion phases, the EROI of the fossil fuel economy has been in marked decline for the past few decades.

Thus one of the key questions about a supposed nuclear renaissance is, can the nuclear power industry achieve an EROI comparable to that of the fossil fuel economy we have known to date? Most published analyses say no9 – from an Energy Return On Investment standpoint, nuclear power generation is (at worst) not worth doing at all, or (at best) worth doing even though it will produce much more expensive energy than the energy we came to depend on during the twentieth century.

If nuclear power generation has a low EROI, in sum, it cannot and will not fuel a continued economic expansion.

Rhodes argues that nuclear power is vitally important because we really need it to extend our current model of prosperity to billions more people now and in coming generations, and he claims the mantle of science for this position. But a broader and deeper application of scientific analysis can deal with the economic viability questions about nuclear power that he simply sidesteps.

Illustration at top: high-voltage transmission lines on grounds of Darlington Nuclear Station, on north shore of Lake Ontario east of Toronto

 


NOTES

1Energy: A Human History, page 337 (return to text)

2This is a point explained in more detail by Vaclav Smil, who also gives a perspective on the relative degree of decarbonization. From 1900 to 2000, he says, “the average carbon intensity of the world’s fossil fuel supply kept on declining: when expressed in terms of carbon per unit of the global total primary energy supply, it fell from nearly 28 kg C/GJ [GigaJoule] in 1900 to just below 25 in 1950 and to just over 19 in 2010, roughly a 30% decrease; subsequently, as a result of China’s rapidly rising coal output, it rose a bit during the first decade of the twenty-first century.” Smil, Energy and Civilization: A History, page 270. (return to text)

3Energy: A Human History, page 336 (return to text)

4World Health Organization says there were 1.25 million traffic deaths in 2013. (return to text)

5Energy: A Human History, page 324 (return to text)

6This general statement must be qualified, of course, by noting that some particular nuclear plants should be shut down because their designs were inherently flawed to begin with, or because they have aged beyond the point where they can be maintained and operated safely. (return to text)

7Even if one accepts that the operating safety record of nuclear power stations is exemplary, there are the major issues of nuclear weapons proliferation, and the long-term storage of highly radioactive wastes. Rhodes doesn’t mention weapons proliferation, and he cavalierly dismisses the long-term disposal issue: “The notion that such waste must be successfully protected from exposure for hundreds of thousands of years is counter to how humans handle every other kind of toxic material we produce. We usually bury it, but we also discount its future risk, on the reasonable grounds that we owe concern to one or, at best, two generations beyond our own …” (Energy: A Human History, page 337, emphasis mine). Yes, that’s what we usually do, but in what sense is that “reasonable”? (return to text)

8Though the basic insight is simple, measuring and calculating EROI can be anything but simple. A key issue is deciding how far out to draw the boundaries of an analysis. As Hall, Lambert and Balogh noted in “EROI of different fuels and the implications for society” in 2014, “Societal EROI is the overall EROI that might be derived for all of a nation’s or society’s fuels by summing all gains from fuels and all costs of obtaining them. To our knowledge this calculation has yet to be undertaken because it is difficult, if not impossible, to include all the variables necessary to generate an all-encompassing societal EROI value”. (return to text)

9In Scientific American (April 2013) Mason Inman cited an EROI of 5 for nuclear electricity generation – lower than photovoltaic or wind generators, and only a small fraction of the EROI of 69 that Inman cited for global conventional oil production in 2011. In 2014 a meta-review of studies, EROI of different fuels and the implications for society, gave a mean EROI of 14 for nuclear power. A paper by the World Nuclear Association cites outliers among the published studies, highlighting a conclusion that nuclear generation of electricity has a higher average EROI than hydro or fossil fuel generating systems, and is “one order of magnitude more effective than photovoltaics and wind power”. (return to text)

Energy: A Human History – a slim slice of history and science

Also published at Resilience.org and BiophysEco.

“The population of the earth has increased more than sevenfold since 1850 – from one billion to seven and a half billion – primarily because of science and technology,” Richard Rhodes concludes at the end of his new book Energy: A Human History. “Far from threatening civilization, science, technology, and the prosperity they create will sustain us as well in the centuries to come.”1

Rhodes tells an engaging tale of energy transitions over some 500 years. Yet the limitations in his field of view become critical in the book’s concluding chapter, when he reveals which particular axe he is especially eager to grind.

Both the title of the book and its timing invite comparison with Vaclav Smil’s 2017 work Energy and Civilization: A History (reviewed here). There is a significant overlap, most notably in both author’s views that major energy transitions – from wood to coal, from coal to petroleum – have been multi-generational processes.

But Rhodes’ scope is far narrower, both in time and in geography.

Rhodes begins his story in sixteenth-century England. His cast of characters is overwhelmingly Anglo-American and male, with a sprinkling of western Europeans, and only a brief excursion outside of “western civilization” to discuss oil exploration in Saudi Arabia.

Smil, by contrast, starts his book in pre-history, with an erudite discussion of the energy implications of human evolution. He follows with more than 200 pages on developments in energy usage from ancient times to the Middle Ages, in Africa, India, China, Europe, and Mesoamerica.

Smil’s readers, then, arrive at his discussion of the industrial revolution and the fossil fuel era with an understanding that millennia of progressive developments, around the world, had gone into the technologies and social organizations available to sixteenth-century Englishmen.

The unspoken implication in Rhodes’ tale is that the men of the Royal Society of London started with a blank slate, and all our current technological marvels are due wholly to the magnificence of their particular current in science.

One question that never arises in Rhodes’ book is, how did it happen that a class of educated men had the time and resources to ponder theories, conduct long series of experiments, and write and discuss their essays? There is no mention that during these same centuries, the countries of western Europe were drawing vast quantities of basic resources from Africa and the Americas, at the cost of millions of lives.

In short, this is a woefully incomplete history of energy. But within those limitations, Rhodes writes engagingly and with admirable clarity.

A thermodynamic page-turner

For anyone interested in basic issues of physics and technology, the progression from scattered awareness of curious phenomena, to testable theories, to technologies that were applied on a mass scale and changed everyday life, makes a fascinating story. For example, observations of static electricity from a cat’s hair, frightening strikes of lightning, and the effects of magnets eventually grew into a comprehensive theory of electromagnetism. Rhodes ably outlines how this led through development of crude batteries, then to simple generators, and eventually to the construction of a massive generator harnessing some of the power of Niagara Falls for a new phase of the Industrial Revolution.

Likewise, his discussion of the long gestation of the coal-fired steam engine – which depended on an understanding of basic issues of thermodynamics as well as refinements in metal-working needed for the construction of high-quality boilers – illuminates important factors in the birth of the fossil-fuel era.

An excellent section on early oil drilling and refining processes leads to a fascinating aside: the profitable introduction of lead as a performance-enhancing additive to gasoline, notwithstanding severe health effects which were noticed and decried at the earliest stages of the leaded gas era.

Credit where credit is due

The social effects of these developments in basic and applied science have been sweeping and many of them have been salutary. It would be foolish to deny that science has played a major role in increasing life expectancy and making rapid population growth possible.

Yet many historians would argue that social and political factors such as labour rights and the push for universal education have been equally important.

Of most direct importance to Rhodes’ subject, it is clear that science was critical in helping us understand principles of thermodynamics and helping us harness the power in both fossil fuels and and renewable resources. But science has not decreed that, once having learned to extract and consume fossil fuels, we should use up these resources as fast as humanly possible. That trend, rather, is due to an economic system that requires profits to increase continuously and exponentially.

Likewise, science taught us how to use the fossil fuel resources which have helped boost our population seven-fold in the past 170 years. But science did not create those resources, which were cooking in the earth’s cavities for millions of years before the first protohuman scientist conducted the first experiment.

If, following Rhodes’ thinking, we give science the whole credit for making a population explosion possible, we should also credit science with blowing through millions of years of accumulated energy resources in just a few hundred years. We should give science credit for the fact that billions of people live in areas already being severely impacted by climate change caused by fossil fuel emissions (even though those people typically have used minimal quantities of fossil fuel themselves.) And we should ask, why can’t science come up with a cost- and time-effective way of replacing all those fossil fuels, so that all 7 billion of us plus our more numerous descendants can keep on living the high-energy lifestyle to which (some of) us are accustomed?

Ah, but science has already found a big part of the next answer, Rhodes might answer: nuclear power.

The questions raised by Rhodes’ concluding sections on nuclear power are complex, and we’ll dive into those issues in the next installment.

Illustration at top: “Bridge over the Mongahela River, Pittsburg, Penn.” from the Feb 21, 1857 edition of Ballou’s Pictorial, accessed via Wikimedia Commons


1Energy: A Human History, page 343

A fascinating, flawed look at limits

A review of The Wizard and The Prophet

Also published at Resilience.org.

Charles C. Mann has written consecutive bestsellers of popular history writ large. His 1491 surveyed the civilizations of the pre-Columbian Americas, while 1493 looked at how post-Columbian America has affected the whole world.

The Wizard and the Prophet, by Charles C. Mann, 2018, 616 pages

The Wizard and the Prophet at first glance shows Mann at work on a smaller canvas, comparing the life’s work of two American scientists in the mid-20th century.

Though Norman Borlaug and William Vogt both studied agricultural resources their career trajectories could hardly have been more different. Mann uses the contrast as a framework for a sweeping discussion of the biggest environmental questions facing our generations.

In the process he transforms Borlaug into “The Wizard” and Vogt into “The Prophet’’, superheroes who have, in Mann’s telling, guided the two major currents in environmental thinking ever since. Thus “The Wizard” and “The Prophet” are tapped for analyses of subjects which, for all we know, neither Borlaug nor Vogt actually thought about.

Always lurking in the background are the questions with which Mann opens the book: is it possible to feed, clothe, and shelter 10 billion people on this planet, or are we moving towards inevitable environmental collapse?

The real Norman Borlaug was born to a poor Iowa farm family and he yearned to escape the backbreaking work in the fields. After earning a degree in plant pathology he found himself immersed in even more tedious manual labour in a dusty, eroded, wind-blown patch of dirt outside Mexico City. His goal was to find a variety of wheat that would resist the blight known as rust.

Borlaug planted eight thousand wheat varieties the first season and came up with exactly four rust-resistant varieties. But he eventually developed strains of “dwarf” wheat that not only resisted rust, but which did not blow over in the wind and which responded well to artificial fertilizers. This development became known as the “Green Revolution”, and earned Borlaug a Nobel Peace Prize. He continued to work nearly up to his death in 2009 at the age of ninety-five, with advocacy for genetic engineering a theme of his later writings.

William Vogt was publicly lionized long before Borlaug came to fame, yet he too did his key research in an unglamorous setting: the guano-caked islands off Peru’s coast. For half a century the nitrogen-rich excrement of Guanay cormorants had been a key resource for world agriculture. Peru’s government wanted to know: why did the population of cormorants sometimes crash, and could they safeguard the marvellous output of fertilizer?

While Borlaug’s work rewarded a rigorous focus on detail, Vogt approached his task with the wide-angle lens of ecology. He tied cormorant populations to the ups and downs of the anchovetas which fed the birds; the plankton which fed the anchovetas; and the alternately warm or cold ocean currents of El Niño or La Niña which fed or starved the plankton. The maximum numbers of cormorants as well as their periodic crashes, Vogt reported, were set by nature’s own limits, and it would be foolhardy to push against those limits.

Vogt extended this message of limits in his 1948 book Road to Survival. He believed too much consumption is ecologically disastrous, and this consumption is based on both population growth and the quest for continuing economic growth. Road to Survival was a runaway best-seller.

Trending to infinity

Mann’s story-telling skills shine when he’s narrating the life and times of Borlaug, Vogt and the colourful characters they worked with. When The Wizard and the Prophet embarks on a 200-page tour of today’s many global ecology challenges, Mann’s discursions are fascinating but the quality is uneven.

An overview of world agriculture contrasts the Green Revolution with small-scale “organic” approaches. Yet Mann winds up that chapter without posing an obvious question. The artificial fertilizers required by Green Revolution crops are based on an energy-intensive process with natural gas as a feedstock, but can we be confident we have affordable resources to maintain, let alone double, current fertilizer production?

Through most of the book Mann recognizes the value in Vogt’s arguments for limits as well as Borlaug’s success in at least temporarily pushing those limits. That even-handedness is gone in his chapter on energy supply. Responding to the fear that fossil fuel resources might soon run short, Mann espouses Cornucopianism with an enthusiasm that would make a tar-sands tycoon blush.

In Mann’s reading of history the mere thought of “peak oil” has produced such infelicities as 75 years of war and tyranny in the Middle East. Though in some mere physical sense fossil fuel reserves must be limited, Mann argues, they are economically infinite – and economics trumps physics. That may be “counterintuitive”, he admits, “but more than a century of experience has shown it to be true.” If a trend lasts 100 years, apparently, we should feel confident it will be sustained for all time.

His chapter on climate change has more grounding in science and reason, but is badly dated. He relies on the 2014 report of the Intergovernmental Panel on Climate Change, a necessarily conservative consensus review of thousands of reports published in prior years, which gave a likely range of global temperature increases from 1.5° to 4.5° Celsius.

Mann uses the IPCC’s temperature range and probability estimates to conclude “Very roughly speaking, this translates into a one-out-of-six chance that nothing much will happen – and a one-out-of-six chance of complete disaster.” When Stewart Brand used a similar one-in-six analogy in his 2009 book Whole Earth Discipline it was somewhat plausible. But since that time, measured global warming has been consistently outrunning the IPCCs cautious projections, many climatologists warn that we’ve already passed any chance of keeping global warming to less than 2°C, and the possible outcomes now run along a spectrum of biospheric  and civilizational catastrophes.

Vogt’s 1948 Road to Survival was a bestseller, but by the mid-1960s he found it hard to get a hearing in major media. Borlaug’s 1970 Nobel Prize was the first of a series of accolades that continued for the next 40 years. (Photo of statue in US Capitol building by Architect of the Capitol)

While Borlaug was influential to the end of his long life Vogt’s career flamed out early. In the 1950s he turned to population control as the single overriding issue, leading to a stormy tenure  at the helm of Planned Parenthood. Publishers and book buyers lost interest in his writings and he slid into despair. In 1968 – two years before Borlaug won his Nobel Prize – Vogt was gone, dead by his own hand.

Had he lived another fifty years to see 7 billion people trying to secure a subsistence on a planet already suffering from climate change, it’s hard to imagine that he would have regained hope.

 

Photos at top: Norman Borlaug in Mexico, 1964, photo from Centro Internacional de Mejoramiento de Maíz y Trigo. William Vogt, 1940, promotional photo from Compañia Administradora del Guano