Can nuclear power extend the economic expansion?

Also published at Resilience.org and BiophysEco.

Richard Rhodes’ new book Energy: A Human History does an excellent job of describing the scientific and technological hurdles that had to be cleared in the development of, for example, an internal combustion engine which can convert refined petroleum into forward motion.

But he gives short shrift to the social and political forces that have been equally important in determining how technological advances shape our world. That internal combustion engine might be a wonder of ingenuity, but was there any scientific reason we should make multi-tonne vehicles the primary mode of transportation for single passengers in cities, drastically reconfiguring urban landscapes in the process? When assiduous research resulted in more efficient engines, did science also dictate that we should use those engines to drive bigger and heavier SUV’s, and then four-wheel-drive, four-door pick-up trucks, to our suburban grocery superstores?

Unfortunately, Rhodes presents the benefits of modern science as if they are all inextricably wrapped up in our current high-energy-consumption economy, implying that human prosperity must end unless we find ways to maintain this high-energy system.

In this second part of a look at Energy (first installment here), we’ll delve into these questions as they relate to Rhodes’ strident defense of nuclear power.

To set the context, Rhodes argues that the only realistic – and the most ethical – way forward is a gradual progression on the path we are already taking, and that means an “all energy sources except coal and oil” strategy:

“Every energy system has its advantages and disadvantages …. And given the scale of global warming and human development, we will need them all if we are to finish the centuries-long process of decarbonizing our energy supply – wind, solar, hydro, nuclear, natural gas.”1

Three key points here: First, Rhodes recognizes the severity and urgency of the climate problem.

Second, he believes we have been “decarbonizing our energy supply” for centuries. That is true with respect to intensity: we now release fewer units of carbon for each unit of energy than we did in the 19th century.2 But in an overall sense, we emit vastly more carbon cumulatively (and vastly more carbon per capita) than we used to. It is the overall carbon emissions, not the carbon/energy intensity ratio, that matters to the climate.

Third, while energy production via natural gas has relatively low carbon emissions at the point of combustion, there is wide recognition that methane leaks throughout the production/transmission chain are major sources of greenhouse gas emissions, which may counteract the benefits of switching from coal to gas. Rhodes makes only an oblique reference to this critical problem in current natural gas usage.

It’s the issue of nuclear power, though, that really brings out Rhodes’ rhetorical heat. Consider this ad hominem attack:

“Antinuclear activists, whose agendas originated in a misinformed neo-Malthusian foreboding of overpopulation (and a willingness at the margin to condemn millions of their fellow human beings to death from disease and starvation), may fairly be accused of disingenuousness in their successive arguments against the safest, least polluting, least warming, and most reliable energy source humanity has yet devised.3

If someone warns that a social or technological development is likely to result in mass death, does that logically mean they want mass death, or that they are indifferent to it? Obviously not. They may well be sincerely motivated by a desire to save lives – just as those who promote the same social or technological development might sincerely believe that is the best way to save lives and promote prosperity.

So I think it is Rhodes who is being disingenuous with his ad hominem argument – even though I happen to agree with some of his substantive points on the relative safety of nuclear power.

What could go wrong?

As one who has lived for fifteen years just downwind of major nuclear facilities – first a uranium processing plant, more recently a nuclear power generator – I’ve had lots of incentive to study the potential safety hazards of the nuclear power industry. And on the issue of the relative operating safety of nuclear power generation, my conclusions have been much the same as those Rhodes puts forth.

I frequently take a short bike ride along the Lake Ontario Waterfront Trail through the buffer zone around the Darlington Nuclear Generating Station. Is this a significant hazard to my health? Yes it is, but only because this route also requires me to share the road with trucks and cars for a few kilometers, and to ride right beside a stream of pollution-emitting traffic on Ontario’s busiest expressway.

As a close neighbour of nuclear facilities, my risk of death due to sudden catastrophic nuclear power accident is several orders of magnitude lower than my risk of death due to sudden catastrophic traffic accident. (Worldwide, well over a million people are killed in traffic accidents per year.4)

As for the health risk due to chronic exposure to the amounts of radiation that are emitted by a current Canadian nuclear generating plant, I fully concur with Rhodes’ more general conclusion: “Low doses of radiation are not only low risk; they’re also lost in the noise of other sources of environmental insult.”5

Likewise, I share Rhodes’ conclusion that shutting down our existing nuclear power plants for environmental reasons, while continuing to rely on coal for a significant part of electricity generation, is daft6 – we should replace carbon-emitting generating systems first.

In my region, I would be sorry to see Darlington Nuclear Station shut down if Ontario were still significantly reliant on gas-powered peaker plants, as it is now. And given that we have a very long way to go in electrifying personal transportation and home heating, our electricity demand may increase significantly, making the transition to a fully renewable electricity generation system that much farther down the road. In that context, I think our existing nuclear power plants are a better option environmentally than continued or increasing use of any fossil fuel, natural gas included, for generation of electricity.

But should we commission and build new nuclear power plants? That is a very different question. Rhodes recognizes that the economic viability of the nuclear power industry is very much in question, but he makes no significant attempt in Energy to resolve the economic question.

To adequately answer the economic viability question, we would need a much wider conception of science than the one that comes through in Rhodes’ book.7

Beyond physics and chemistry

The science Rhodes celebrates in Energy: A Human History falls almost entirely within very basic physics and chemistry. The discoveries and developments Rhodes discusses are highly significant, and they will always remain foundational – but they are not sufficient for a clear understanding of technological systems, which are also social phenomena.

A more recent scientific advance is essential in coming to grips with our current energy challenges. This is the concept of Energy Return on Investment (EROI). Over his long and distinguished career, ecologist Charles A.S. Hall posited that organisms, ecological communities, and human societies must derive more usable energy from their activities than the energy they invest in those activities. With this simple insight8, Hall gave economics a foundation in the very principles of thermodynamics that Rhodes reveres.

The resulting field of biophysical economics provides a deeper understanding of the socio-technological revolutions that Rhodes simply ascribes to “science”. After studying the Energy Return on Investment of major energy sources over the past 200 years, we can understand how the rapid exploitation of fossil fuels provided a huge boost in the the energy available to society, while simultaneously freeing the great majority of people from energy-procuring activities so that they could work instead at a wide variety of new activities and industries. We can understand that if any society is to use a high quantity of energy per person, while employing only a small number of people in its energy sector, then its energy sector needs a high rate of Energy Return on Investment.

With readily accessible supplies of coal, oil and natural gas, industrial civilization in the past 200 years has benefitted from a very high Energy Return on Investment. But with “sweet spots” exhausted or in depletion phases, the EROI of the fossil fuel economy has been in marked decline for the past few decades.

Thus one of the key questions about a supposed nuclear renaissance is, can the nuclear power industry achieve an EROI comparable to that of the fossil fuel economy we have known to date? Most published analyses say no9 – from an Energy Return On Investment standpoint, nuclear power generation is (at worst) not worth doing at all, or (at best) worth doing even though it will produce much more expensive energy than the energy we came to depend on during the twentieth century.

If nuclear power generation has a low EROI, in sum, it cannot and will not fuel a continued economic expansion.

Rhodes argues that nuclear power is vitally important because we really need it to extend our current model of prosperity to billions more people now and in coming generations, and he claims the mantle of science for this position. But a broader and deeper application of scientific analysis can deal with the economic viability questions about nuclear power that he simply sidesteps.

Illustration at top: high-voltage transmission lines on grounds of Darlington Nuclear Station, on north shore of Lake Ontario east of Toronto

 


NOTES

1Energy: A Human History, page 337 (return to text)

2This is a point explained in more detail by Vaclav Smil, who also gives a perspective on the relative degree of decarbonization. From 1900 to 2000, he says, “the average carbon intensity of the world’s fossil fuel supply kept on declining: when expressed in terms of carbon per unit of the global total primary energy supply, it fell from nearly 28 kg C/GJ [GigaJoule] in 1900 to just below 25 in 1950 and to just over 19 in 2010, roughly a 30% decrease; subsequently, as a result of China’s rapidly rising coal output, it rose a bit during the first decade of the twenty-first century.” Smil, Energy and Civilization: A History, page 270. (return to text)

3Energy: A Human History, page 336 (return to text)

4World Health Organization says there were 1.25 million traffic deaths in 2013. (return to text)

5Energy: A Human History, page 324 (return to text)

6This general statement must be qualified, of course, by noting that some particular nuclear plants should be shut down because their designs were inherently flawed to begin with, or because they have aged beyond the point where they can be maintained and operated safely. (return to text)

7Even if one accepts that the operating safety record of nuclear power stations is exemplary, there are the major issues of nuclear weapons proliferation, and the long-term storage of highly radioactive wastes. Rhodes doesn’t mention weapons proliferation, and he cavalierly dismisses the long-term disposal issue: “The notion that such waste must be successfully protected from exposure for hundreds of thousands of years is counter to how humans handle every other kind of toxic material we produce. We usually bury it, but we also discount its future risk, on the reasonable grounds that we owe concern to one or, at best, two generations beyond our own …” (Energy: A Human History, page 337, emphasis mine). Yes, that’s what we usually do, but in what sense is that “reasonable”? (return to text)

8Though the basic insight is simple, measuring and calculating EROI can be anything but simple. A key issue is deciding how far out to draw the boundaries of an analysis. As Hall, Lambert and Balogh noted in “EROI of different fuels and the implications for society” in 2014, “Societal EROI is the overall EROI that might be derived for all of a nation’s or society’s fuels by summing all gains from fuels and all costs of obtaining them. To our knowledge this calculation has yet to be undertaken because it is difficult, if not impossible, to include all the variables necessary to generate an all-encompassing societal EROI value”. (return to text)

9In Scientific American (April 2013) Mason Inman cited an EROI of 5 for nuclear electricity generation – lower than photovoltaic or wind generators, and only a small fraction of the EROI of 69 that Inman cited for global conventional oil production in 2011. In 2014 a meta-review of studies, EROI of different fuels and the implications for society, gave a mean EROI of 14 for nuclear power. A paper by the World Nuclear Association cites outliers among the published studies, highlighting a conclusion that nuclear generation of electricity has a higher average EROI than hydro or fossil fuel generating systems, and is “one order of magnitude more effective than photovoltaics and wind power”. (return to text)

Energy: A Human History – a slim slice of history and science

Also published at Resilience.org and BiophysEco.

“The population of the earth has increased more than sevenfold since 1850 – from one billion to seven and a half billion – primarily because of science and technology,” Richard Rhodes concludes at the end of his new book Energy: A Human History. “Far from threatening civilization, science, technology, and the prosperity they create will sustain us as well in the centuries to come.”1

Rhodes tells an engaging tale of energy transitions over some 500 years. Yet the limitations in his field of view become critical in the book’s concluding chapter, when he reveals which particular axe he is especially eager to grind.

Both the title of the book and its timing invite comparison with Vaclav Smil’s 2017 work Energy and Civilization: A History (reviewed here). There is a significant overlap, most notably in both author’s views that major energy transitions – from wood to coal, from coal to petroleum – have been multi-generational processes.

But Rhodes’ scope is far narrower, both in time and in geography.

Rhodes begins his story in sixteenth-century England. His cast of characters is overwhelmingly Anglo-American and male, with a sprinkling of western Europeans, and only a brief excursion outside of “western civilization” to discuss oil exploration in Saudi Arabia.

Smil, by contrast, starts his book in pre-history, with an erudite discussion of the energy implications of human evolution. He follows with more than 200 pages on developments in energy usage from ancient times to the Middle Ages, in Africa, India, China, Europe, and Mesoamerica.

Smil’s readers, then, arrive at his discussion of the industrial revolution and the fossil fuel era with an understanding that millennia of progressive developments, around the world, had gone into the technologies and social organizations available to sixteenth-century Englishmen.

The unspoken implication in Rhodes’ tale is that the men of the Royal Society of London started with a blank slate, and all our current technological marvels are due wholly to the magnificence of their particular current in science.

One question that never arises in Rhodes’ book is, how did it happen that a class of educated men had the time and resources to ponder theories, conduct long series of experiments, and write and discuss their essays? There is no mention that during these same centuries, the countries of western Europe were drawing vast quantities of basic resources from Africa and the Americas, at the cost of millions of lives.

In short, this is a woefully incomplete history of energy. But within those limitations, Rhodes writes engagingly and with admirable clarity.

A thermodynamic page-turner

For anyone interested in basic issues of physics and technology, the progression from scattered awareness of curious phenomena, to testable theories, to technologies that were applied on a mass scale and changed everyday life, makes a fascinating story. For example, observations of static electricity from a cat’s hair, frightening strikes of lightning, and the effects of magnets eventually grew into a comprehensive theory of electromagnetism. Rhodes ably outlines how this led through development of crude batteries, then to simple generators, and eventually to the construction of a massive generator harnessing some of the power of Niagara Falls for a new phase of the Industrial Revolution.

Likewise, his discussion of the long gestation of the coal-fired steam engine – which depended on an understanding of basic issues of thermodynamics as well as refinements in metal-working needed for the construction of high-quality boilers – illuminates important factors in the birth of the fossil-fuel era.

An excellent section on early oil drilling and refining processes leads to a fascinating aside: the profitable introduction of lead as a performance-enhancing additive to gasoline, notwithstanding severe health effects which were noticed and decried at the earliest stages of the leaded gas era.

Credit where credit is due

The social effects of these developments in basic and applied science have been sweeping and many of them have been salutary. It would be foolish to deny that science has played a major role in increasing life expectancy and making rapid population growth possible.

Yet many historians would argue that social and political factors such as labour rights and the push for universal education have been equally important.

Of most direct importance to Rhodes’ subject, it is clear that science was critical in helping us understand principles of thermodynamics and helping us harness the power in both fossil fuels and and renewable resources. But science has not decreed that, once having learned to extract and consume fossil fuels, we should use up these resources as fast as humanly possible. That trend, rather, is due to an economic system that requires profits to increase continuously and exponentially.

Likewise, science taught us how to use the fossil fuel resources which have helped boost our population seven-fold in the past 170 years. But science did not create those resources, which were cooking in the earth’s cavities for millions of years before the first protohuman scientist conducted the first experiment.

If, following Rhodes’ thinking, we give science the whole credit for making a population explosion possible, we should also credit science with blowing through millions of years of accumulated energy resources in just a few hundred years. We should give science credit for the fact that billions of people live in areas already being severely impacted by climate change caused by fossil fuel emissions (even though those people typically have used minimal quantities of fossil fuel themselves.) And we should ask, why can’t science come up with a cost- and time-effective way of replacing all those fossil fuels, so that all 7 billion of us plus our more numerous descendants can keep on living the high-energy lifestyle to which (some of) us are accustomed?

Ah, but science has already found a big part of the next answer, Rhodes might answer: nuclear power.

The questions raised by Rhodes’ concluding sections on nuclear power are complex, and we’ll dive into those issues in the next installment.

Illustration at top: “Bridge over the Mongahela River, Pittsburg, Penn.” from the Feb 21, 1857 edition of Ballou’s Pictorial, accessed via Wikimedia Commons


1Energy: A Human History, page 343

A fascinating, flawed look at limits

A review of The Wizard and The Prophet

Also published at Resilience.org.

Charles C. Mann has written consecutive bestsellers of popular history writ large. His 1491 surveyed the civilizations of the pre-Columbian Americas, while 1493 looked at how post-Columbian America has affected the whole world.

The Wizard and the Prophet, by Charles C. Mann, 2018, 616 pages

The Wizard and the Prophet at first glance shows Mann at work on a smaller canvas, comparing the life’s work of two American scientists in the mid-20th century.

Though Norman Borlaug and William Vogt both studied agricultural resources their career trajectories could hardly have been more different. Mann uses the contrast as a framework for a sweeping discussion of the biggest environmental questions facing our generations.

In the process he transforms Borlaug into “The Wizard” and Vogt into “The Prophet’’, superheroes who have, in Mann’s telling, guided the two major currents in environmental thinking ever since. Thus “The Wizard” and “The Prophet” are tapped for analyses of subjects which, for all we know, neither Borlaug nor Vogt actually thought about.

Always lurking in the background are the questions with which Mann opens the book: is it possible to feed, clothe, and shelter 10 billion people on this planet, or are we moving towards inevitable environmental collapse?

The real Norman Borlaug was born to a poor Iowa farm family and he yearned to escape the backbreaking work in the fields. After earning a degree in plant pathology he found himself immersed in even more tedious manual labour in a dusty, eroded, wind-blown patch of dirt outside Mexico City. His goal was to find a variety of wheat that would resist the blight known as rust.

Borlaug planted eight thousand wheat varieties the first season and came up with exactly four rust-resistant varieties. But he eventually developed strains of “dwarf” wheat that not only resisted rust, but which did not blow over in the wind and which responded well to artificial fertilizers. This development became known as the “Green Revolution”, and earned Borlaug a Nobel Peace Prize. He continued to work nearly up to his death in 2009 at the age of ninety-five, with advocacy for genetic engineering a theme of his later writings.

William Vogt was publicly lionized long before Borlaug came to fame, yet he too did his key research in an unglamorous setting: the guano-caked islands off Peru’s coast. For half a century the nitrogen-rich excrement of Guanay cormorants had been a key resource for world agriculture. Peru’s government wanted to know: why did the population of cormorants sometimes crash, and could they safeguard the marvellous output of fertilizer?

While Borlaug’s work rewarded a rigorous focus on detail, Vogt approached his task with the wide-angle lens of ecology. He tied cormorant populations to the ups and downs of the anchovetas which fed the birds; the plankton which fed the anchovetas; and the alternately warm or cold ocean currents of El Niño or La Niña which fed or starved the plankton. The maximum numbers of cormorants as well as their periodic crashes, Vogt reported, were set by nature’s own limits, and it would be foolhardy to push against those limits.

Vogt extended this message of limits in his 1948 book Road to Survival. He believed too much consumption is ecologically disastrous, and this consumption is based on both population growth and the quest for continuing economic growth. Road to Survival was a runaway best-seller.

Trending to infinity

Mann’s story-telling skills shine when he’s narrating the life and times of Borlaug, Vogt and the colourful characters they worked with. When The Wizard and the Prophet embarks on a 200-page tour of today’s many global ecology challenges, Mann’s discursions are fascinating but the quality is uneven.

An overview of world agriculture contrasts the Green Revolution with small-scale “organic” approaches. Yet Mann winds up that chapter without posing an obvious question. The artificial fertilizers required by Green Revolution crops are based on an energy-intensive process with natural gas as a feedstock, but can we be confident we have affordable resources to maintain, let alone double, current fertilizer production?

Through most of the book Mann recognizes the value in Vogt’s arguments for limits as well as Borlaug’s success in at least temporarily pushing those limits. That even-handedness is gone in his chapter on energy supply. Responding to the fear that fossil fuel resources might soon run short, Mann espouses Cornucopianism with an enthusiasm that would make a tar-sands tycoon blush.

In Mann’s reading of history the mere thought of “peak oil” has produced such infelicities as 75 years of war and tyranny in the Middle East. Though in some mere physical sense fossil fuel reserves must be limited, Mann argues, they are economically infinite – and economics trumps physics. That may be “counterintuitive”, he admits, “but more than a century of experience has shown it to be true.” If a trend lasts 100 years, apparently, we should feel confident it will be sustained for all time.

His chapter on climate change has more grounding in science and reason, but is badly dated. He relies on the 2014 report of the Intergovernmental Panel on Climate Change, a necessarily conservative consensus review of thousands of reports published in prior years, which gave a likely range of global temperature increases from 1.5° to 4.5° Celsius.

Mann uses the IPCC’s temperature range and probability estimates to conclude “Very roughly speaking, this translates into a one-out-of-six chance that nothing much will happen – and a one-out-of-six chance of complete disaster.” When Stewart Brand used a similar one-in-six analogy in his 2009 book Whole Earth Discipline it was somewhat plausible. But since that time, measured global warming has been consistently outrunning the IPCCs cautious projections, many climatologists warn that we’ve already passed any chance of keeping global warming to less than 2°C, and the possible outcomes now run along a spectrum of biospheric  and civilizational catastrophes.

Vogt’s 1948 Road to Survival was a bestseller, but by the mid-1960s he found it hard to get a hearing in major media. Borlaug’s 1970 Nobel Prize was the first of a series of accolades that continued for the next 40 years. (Photo of statue in US Capitol building by Architect of the Capitol)

While Borlaug was influential to the end of his long life Vogt’s career flamed out early. In the 1950s he turned to population control as the single overriding issue, leading to a stormy tenure  at the helm of Planned Parenthood. Publishers and book buyers lost interest in his writings and he slid into despair. In 1968 – two years before Borlaug won his Nobel Prize – Vogt was gone, dead by his own hand.

Had he lived another fifty years to see 7 billion people trying to secure a subsistence on a planet already suffering from climate change, it’s hard to imagine that he would have regained hope.

 

Photos at top: Norman Borlaug in Mexico, 1964, photo from Centro Internacional de Mejoramiento de Maíz y Trigo. William Vogt, 1940, promotional photo from Compañia Administradora del Guano

The climate revolution: a manual for head, hands and heart

Also published at Resilience.org.

How many people in North America and Europe have known for at least 15 years that climate change is dangerous, that it is caused mostly by our burning of fossil fuels, and that we must drastically reduce our fossil fuel consumption?

That would be most of us.

And how many of us have drastically reduced our fossil fuel consumption?

Not so many of us.

Mostly, our actions proclaim “We’ll cut back our fossil fuel use when everybody else does … or when the government forces us … or when hell freezes over – whichever comes last!”

Physicist and climatologist Peter Kalmus found the gulf between his beliefs and his lifestyle to be deeply unsatisfying, and he set out to heal that rift.

The result, he says, has been a dramatically richer life for him and his family.

His book Being The Change (New Society Publishers, 2017) outlines the ‘why’ and ‘how’ of his family’s reduction of their fossil fuel consumption by 90% in just a few years. His discussion ranges from climate science to economics, from bicycling to beekeeping, from community networks to meditation, in a deeply inspiring narrative.

Waves of gravity

Kalmus didn’t begin his scientific career in climatology. With a PhD in astrophysics, his speciality was gravitational waves and his day job was working through the data that would, in 2016, confirm Einstein’s prediction of gravitational waves.

But he was also learning about the onrushing catastrophe of climate change, and as a young parent he was deeply worried for the world his children would inherit. Motivated by a desire to work on problems closer to home, he switched his professional focus, taking a new job at NASA studying the role of clouds in global warming.

Kalmus describes Being the Change as a book for the head, the hands and the heart. Wearing his scientist hat, he lucidly lays out the science of climate change. These chapters don’t require more than a high-school science background to understand, but even those who have read many books and articles on the subject are likely to learn something. For those who have read little or nothing on this subject, a good beginning would be to read Kalmus’ chapters on climate science three or four times over – he packs a lot of information into 50 pages.

His sobering conclusion is that we have already stalled too long to have any reasonable chance of keeping global warming below 2°C. Within two or three decades, the mean global temperature will be higher than in any record-warmth year in human experience so far. That new climate era will last centuries, challenging the resiliency of not only human civilization but global biodiversity.

The key uncertainty, he says, is the temperature at which global warming will peak. None of us alive today will be here to experience that peak, but our actions this generation will have a major influence on that peak. A higher peak will cause a spike in the rate of species extinctions, and if and when global warming slows or stops, it will take far longer for biodiversity to recover.

“A good overarching goal for today’s civilization would be to minimize global warming and its concomitant biodiversity loss for the sake of the next few hundred thousand human generations.” (Being the Change, page 69)

Fear of not flying

Climate science gives us clear warning of the disaster we are bequeathing our descendants if we don’t change our way of life, fast. Kalmus concludes, “it’s critical we begin saying that burning fossil fuels is causing real harm and needs to stop. It’s even more important to begin living this message.” (Being the Change, page 120 – italics mine)

A second major focus of the book is “hands-on” – the many ways people can change their own lives to join the movement away from fossil fuels. Kalmus relates his personal experiences here, but he also provides valuable suggestions to help others estimate their consumption of fossil fuels and reduce that consumption in meaningful ways.

Kalmus found that one category of fossil fuel consumption outweighed all others in his life: long-distance travel by air. Much of this consumption happened in traveling to distant conferences where delegates would warn of the dangers of climate change. Kalmus’ decision to stop taking these flights led to a more satisfying life, he says – though this was a rejection of one of the signature privileges of a global elite.

“The act of flying is an exercise of privilege. Globally, only about 5% of humans have ever flown.” (Being the Change, page 151)

Even the average American spends relatively little time in the air. Kalmus writes that “The average American emits about 1,000 kg CO2 per year from flying, which is roughly equivalent to one 4,000-mile round-trip between Los Angeles and Chicago.” But in 2010, Kalmus’ carbon emissions due to flying were 16 times that average – and so it was obvious where he had to make the first change to align his lifestyle with his knowledge.

Kalmus’ graph of his greenhouse gas emissions for 2010 – 2014. Source: Being the Change, page 144. (click graph for larger view)

For the average American, Kalmus says, the “largest climate impact is from driving.” He largely eliminated those CO2 emissions from his life too, through routine bicycling, driving a car that he converted to run on used vegetable oil, and taking a bus or trains for occasional long-distance trips.

Each person’s CO2 emission profile, and therefore their opportunities for emission reductions, will be different.

But Kalmus hopes others will share his experience in one key respect – a greater peace with their own lives and their own surroundings.

“I think most people are afraid of a low-energy lifestyle because we equate quality of life with quantity of energy use,” he says. “My experience has been the opposite: low-energy living is more fun and satisfying.”

Reading about his new-found love of gardening and beekeeping, and the strength of the local community bonds he and his family have developed, it’s easy to understand the richness of this low-energy lifestyle.

He also makes clear that he doesn’t believe that purely individual actions are sufficient to halt the fossil-fuel juggernaut. In the realm of public policy, he pens an excellent advocacy for his preferred fiscal approach to reducing national and international CO2 emissions – Carbon Fee And Dividend (CFAD). He also discusses his work with one group working on the CFAD option, the Citizens’ Climate Lobby.

Finding a lifestyle that matches his principles brings joy and a significant measure of peace of mind. At the same time, finding peace of mind is key in giving him the energy to embark on all those personal changes. That brings us to a third major focus of Being the Change: meditation.

“As part of my daily work, I look directly at the truth of global warming, and what it’s doing to the inhabitants of the Earth. Meditation gives me the strength and the courage to keep interacting with this truth, as it is – not only to cope, but to be happy and as effective as possible in enacting positive change.” (Being the Change, page 203)

As one who has never been attracted to the practice of meditation, Kalmus’ story here left me with mixed feelings. On the one hand, his discussions of dissolving the ego and escaping all wants were, for this reader, just about the only parts of the book that weren’t wholly convincing. On the other hand his life story so far is truly moving, and if he says meditation has been central to that journey then I can only celebrate the strength and peace that meditation gives him. More than that, his book has made me ask whether I want to introduce meditation into my own life in a concerted way; better late, perhaps, than never.

Science and love

Peter Kalmus has written a profound book about the science of global warming, and a profound book about love:

“These two seemingly disparate things – reducing my own fossil fuel use and increasing my ability to love – are actually intimately interconnected.”

In the process he grapples with three of the most troublesome questions facing the environmental movement. Can we convince people it’s essential to eliminate fossil fuel use, when our own lifestyles say that fossil fuel use is no problem? Can we convince people that a high-energy lifestyle is unnecessary and destructive, when we act as if our lives depend on that lifestyle? Can we be happily productive agents of change, while we are caught up in the high-energy whirl of consumptive capitalism? It’s hard to answer those questions except with “No, no and no.” And yet Kalmus’ personal message is deeply positive and deeply hopeful:

“On my own path, as I continue to reduce, I’m actually experiencing increasing abundance. It’s a good path.”

 

Photo at top: Peter Kalmus, photo by Alice Goldsmith, courtesy of New Society Publishers

When boom is bust: the shale oil bonanza as a symptom of economic crisis

Also published at Resilience.org.

The gradual climb in oil prices in recent weeks has revived hopes that US shale oil producers will return to profitability, while also renewing fevered dreams of the US becoming a fossil fuel superpower once again.

Thus a few days ago my daily newspaper ran a Bloomberg article by Grant Smith which lead with this sweeping claim:

“The U.S. shale revolution is on course to be the greatest oil and gas boom in history, turning a nation once at the mercy of foreign imports into a global player. That seismic shift shattered the dominance of Saudi Arabia and the OPEC cartel, forcing them into an alliance with long-time rival Russia to keep a grip on world markets.”

I might have simply chuckled and turned the page, had I not just finished reading Oil and the Western Economic Crisis, by Cambridge University economist Helen Thompson. (Palgrave Macmillan, 2017)

Thompson looks at the same  shale oil revolution and draws strikingly different conclusions, both about the future of the oil economy and about the effects on US relations with OPEC, Saudi Arabia, and Russia.

Before diving into Thompson’s analysis, let’s first look at the idea that the shale revolution may be “the greatest oil and gas boom in history”. As backing for this claim, Grant Smith cites a report earlier in November by the International Energy Agency, predicting that US shale oil output will soar to about 8 million barrels/day by 2025.

Accordingly, “ ‘The United States will be the undisputed leader of global oil and gas markets for decades to come,’ IEA Executive Director Fatih Birol said … in an interview with Bloomberg television.”

Let’s leave this prediction unchallenged for the moment. (Though skeptics could start with David Hughes detailed look at the IEA’s 2016 forecasts here, or with a recent MIT report that confirms a key aspect of Hughes’ analysis.) Suppose the IEA turns out to be right. How will the shale bonanza rank among the great oil booms in history?

Grant Smith uses the following chart to bolster his claim that the fracking boom will equal Saudi Arabia’s expansion in the 1960s and 1970s.

 

Chart by Bloomberg

 

OK, so if US shale oil rises to 8 million barrels by 2025, that production will be about the same as Saudi oil production in 1981. Would that make these two booms roughly equivalent?

First, world oil consumption in the early 1980s was only about two-thirds what it is now. So 8 billion barrels/day represented a bigger proportion of the world’s oil needs in 1980 that it does today.

Second, Saudi Arabia used very little of its oil domestically in 1980, leaving most of it for sale abroad, and that gave it a huge impact on the world market. The US, by contrast, still burns more oil domestically than it produces – and in the best case scenario, its potential oil exports in 2025 would be a small percentage of global supply.

Third, Saudi Arabia has been able to keep roughly 8 million barrels/day flowing for the past 40 years, while even the IEA’s optimistic forecast shows US shale oil output starting to drop within ten years of a 2025 peak.

And last but not least, Saudi Arabia’s 8 million barrels/day have come with some of the world’s lowest production costs, while US shale oil comes from some of the world’s costliest wells.

All these factors come into play in Helen Thompson’s thorough analysis.

No more Mr. NICE Guy

In an October 2005 speech, Bank of England governor Mervyn King “argued that the rising price of oil was ending what he termed ‘NICE’ – a period of ‘non-inflationary consistently expansionary economic growth’ that began in 1992.” (Thompson, Oil and the Western Economic Crisis, page 28-29)

In spite of their best efforts in the first decade of this millennium, Western governments were not able to maintain steady economic growth, nor keep the price of oil in check, nor significantly increase the supply of oil, nor prevent the onslaught of a serious recession. Thompson traces the interplay of several major economic factors, both before and after this recession.

By the beginning of the George W. Bush administration, there was widespread concern that world oil production would not keep up with growing demand. The booming economies of China and India added to this fear.

“Of the increase of 17.9 million bpd in oil consumption that materialised between 1994 and 2008,” Thompson writes, “only 960,000 of the total came from the G7 economies.” Nearly all of the growth in demand came from China and India – and that growth in demand was forecast to continue.

The GW Bush administration appointed oilman and defense hawk Dick Cheney to lead a task force on the impending supply crunch. But “ultimately, for all the aspiration of the Cheney report, the Bush Jr administration’s energy strategy did little to increase the supply of oil over the first eight years of the twenty-first century.” (Thompson, page 20)

In fact, the only significant supply growth in the decade up to 2008 came from Russia. This boosted Putin’s power while fracturing Western economic interests, as “the western states divided between those who were significant importers of Russian oil and gas and those that were not.” (Thompson, page 23)

Meanwhile oil prices shot up dramatically until Western economies dropped into recession in 2007 as a precursor to the 2008 financial crash. Shouldn’t those high oil prices have spurred high investment in new wells, with consequent rises in production? It didn’t work out that way.

Between 2003 and the first half of 2008 the costs of the construction of production facilities, oil equipment and services, and energy soared in good part in response to the overall commodity boom produced by China’s economic rise. Consequently, whilst future oil supply was becoming ever more dependent on large-scale capital investment both to extract more from declining fields and to open up high-cost non-conventional production, the capital available was also required by 2008 simply to cover rising existing costs.” (Thompson, page 23)

Thus oil prices rose to the point where western economies could no longer maintain consumption levels, but these high prices still couldn’t finance the kind of new drilling needed to boost production.

Oddly enough, the right conditions for a boom in US oil production wouldn’t occur until well after the crash of 2008, when monetary policy-makers were struggling with little success to revive economic growth.

Zero Interest Rate Policy

In western Europe and the US, recovery from the financial crisis of 2008 has been sluggish and incomplete. But the growth in demand for oil by India and China continued, with the result that after a brief price drop in 2009 oil quickly rebounded to $100/barrel and stayed there for the next few years.

As in the years leading up to the crash, $100 oil proved too expensive for western economies, accustomed as they had been to running on cheap energy for decades. Consumer confidence, and consumer spending, remained low.

Simply pumping the markets with cash – Quantitative Easing – had little effect on the real economy (though it afforded bank execs huge bonuses and boosted the prices of stocks and other financial assets). But as interest rates dropped to historic lows, the flood of nearly-free money finally revived the US energy-production sector.

QE and ZIRP hugely increased the availability of credit to the energy sector. ZIRP allowed oil companies to borrow from banks at extremely low interest rates, with the worth of syndicated loans to the oil and gas sectors rising from $600 billion in 2006 to $1.6 trillion in 2014. Meanwhile, in raising the price and depressing the yield of the relatively safe assets central banks purchased, QE created incentives for investors to buy assets with a higher yield, including significantly riskier corporate bonds and equities. …” (Thompson, page 50)

Without this extraordinary monetary expansion “the rise of non-conventional oil production would not have been possible”, Thompson concludes.

And while a huge boost in shale oil production might be counted as a “win” for the economic growth team, the downsides have been equally serious. The Zero Interest Rate Policy has almost eliminated interest earnings for cautious middle-income savers, which depresses consumer spending in the short term and threatens the security of millions in the long term. The inflation in asset prices has boosted the profits of large corporations, while weak consumer confidence has removed corporate incentive to invest in greater production of most consumer goods.

The situation would be more stable if non-conventional oil producers had the ability to weather prolonged periods of low oil prices. But as the price drop of 2015 showed, that would be wishful thinking. “By the second quarter of 2015 more than half of all distressed bonds across investment and high-yield bond markets were issued by energy companies. Under these financial strains a wave of shale bankruptcies began in the first quarter of 2015” – a bankruptcy wave that grew three times as high in 2016.

Finally, financial markets with their high exposure to risky non-conventional oil production have been easily spooked by mere rumours of the end of quantitative easing or any significant rise in interest rates. So central bankers have good reason to fear they may go into the next recession with no tools left in their monetary policy toolbox.

Far from representing a way out of economic crisis, then, the shale oil and related tar sands booms are a symptom of an ongoing economic crisis, the end of which is nowhere in sight.

Energy and power

Thompson also discusses the geo-political effects of the changing global oil market. She notes that the shale oil boom created serious tensions in the US-Saudi relationship. The Saudis wanted oil prices to be moderately high, perhaps in the $50-60/barrel range, because that would afford the Saudis substantial profits without driving down demand for oil. The Americans, with their billions sunk into high-cost shale oil wells, now had a need for oil prices in the $70/barrel and up range, simply to make the fracked oil minimally profitable.

There was no way for both the Saudis and the Americans to win in this struggle, though they could both lose.

At the peak (to date) of the shale oil boom, there was only one significant geo-political development in which the Americans were able to flex some muscle specifically because of the big increase in US oil production, Thompson says. She attributes the nuclear treaty with Iran in part to the surge of new oil production in Texas and North Dakota. In her reading, world oil markets at the time needn’t fear the sudden loss of Iran’s oil output, and that gave European governments a comfort level in agreeing to impose sanctions on Iran. These sanctions, in turn, helped convince Iran to make a deal (a diplomatic success which the Trump administration is determined to undo).

But in 2014 OPEC still produced about three times as much oil as the US produced – with important implications:

“even at the height of the shale boom the obvious limits to any claim of geo-political transformation were also evident. The US remained a significant net importer of oil and, consequently, lacked the capacity to act as a swing producer capable of immediately and directly influencing the price.” (Thompson, page 56)

“Most consequentially, when the Obama administration turned towards sanctions against Russia after the onset of the Ukrainian crisis in the spring of 2014, it was not willing to contemplate significant action against Russian oil production.” (Thompson, page 57)

Thompson wraps up with a look at the oil shock of the 1970s, concluding that “There are striking similarities between aspects of the West’s current predicaments around oil and the problems western governments faced in the 1970s. … However, in a number of ways the present version of these problems is worse than those that were manifest in the 1970s.” (Thompson, page 57)

A much higher world oil demand today, the fact that new oil reserves in western countries are very high-cost, plus the explosion of oil-related financial derivatives, make the international monetary order highly unstable.

Has the US returned to the ranks of “fossil fuel superpowers”? Not as Thompson sees it:

Now the US has nothing like the power it had in the post-war period in providing other states access to oil. Shale oil … cannot change the fact that the largest reserves of cheaply accessible oil lie in the Middle East and Russia, or that China and others’ rise has fundamentally changed the volume of demand for oil in the world.” (Thompson, page 111)

S-curves and other paths

Also published at Resilience.org.

Oxford University economist Kate Raworth is getting a lot of good press for her recently released book Doughnut Economics: 7 Ways to Think Like a 21st Century Economist.

The book’s strengths are many, starting with the accessibility of Raworth’s prose. Whether she is discussing the changing faces of economic orthodoxy, the caricature that is homo economicus, or the importance of according non-monetized activities their proper recognition, Raworth keeps things admirably clear.

Doughnut Economics makes a great crash course in promising new approaches to economics. In Raworth’s own words, her work “draws on diverse schools of thought, such as complexity, ecological, feminist, institutional and behavioural economics.” Yet the integration of ecological economics into her framework is incomplete, leading to a frustratingly unimaginative concluding chapter on economic growth.

Laying the groundwork for that discussion of economic growth has resulted in an article about three times as long as most of my posts, so here is the ‘tl;dr’ version:

Continued exponential economic growth is impossible, but the S-curve of slowing growth followed by a steady state is not the only other alternative. If the goal is maintaining GDP at the highest possible level, then the S-curve is the best case scenario, but in today’s world that isn’t necessarily desirable or even possible.

The central metaphor

Full disclosure: for as long as I can remember, the doughnut has been my least favourite among refined-sugar-white-flour-and-grease confections. So try as I might to be unbiased, I was no doubt predisposed to react critically to Raworth’s title metaphor.

What is the Doughnut? As Raworth explains, the Doughnut is the picture that emerged when she sketched a “safe space” between the Social Foundation necessary for prosperity, and the Ecological Ceiling beyond which we should not go.

Source: Doughnut Economics, page 38

There are many good things to be said about this picture. It affords a prominent place to both the social factors and the ecological factors which are essential to prosperity, but which are omitted from many orthodox economic models. The picture also restores ethics, and the choosing of goals, to central roles in economics.

Particularly given Raworth’s extensive background in development economics, it is easy to understand the appeal of this diagram.

But I agree with Ugo Bardi (here and here) that there is no particular reason the diagram should be circular – Shortfall, Social Foundation, Safe and Just Space, Ecological Ceiling and Overshoot would have the same meaning if arranged in horizontal layers rather than in concentric circles.

From the standpoint of economic analysis, I find it unhelpful to include a range of quite dissimilar factors all at the same level in the centre of the diagram. A society could have adequate energy, water and food without having good housing and health care – but you couldn’t have good housing and health care without energy, water and food. So some of these factors are clearly preconditions for others.

Likewise, some of the factors in the centre of the diagram are clearly and directly related to “overshoot” in the outer ring, while others are not. Excessive consumption of energy, water, or food often leads to ecological overshoot, but you can’t say the same about “excessive” gender equality, political voice, or peace and justice.

Beyond these quibbles with the Doughnut diagram, I further agree with Bardi that a failure to incorporate biophysical economics is the major weakness of Doughnut Economics. In spite of her acknowledgment of the pioneering work of Herman Daly, and a brief but lucid discussion of the work of Robert Ayres and Benjamin Warr showing that fossil fuels have been critical for the past century’s GDP growth, Raworth does not include energy supply as a basic determining factor in economic development.

Economists as spin doctors

Raworth makes clear that key doctrines of economic orthodoxy often obscure rather than illuminate economic reality. Thus economists in rich countries extoll the virtues of free trade, though their own countries relied on protectionism to nurture their industrial base.

Likewise standard economic modeling starts with a reductionist “homo economicus” whose decisions are always based on rational pursuit of self-interest – even though behavioral science shows that real people are not consistently rational, and are motivated by co-operation as much as by self-interest. Various studies indicate, however, that economics students and professors show a greater-than-average degree of self-interest. And for those who are already wealthy but striving to become wealthier still, it is comforting to believe that everyone is similarly self-interested, and that their self-interest works to the good of all.

When considering a principle of mainstream economics, then, it makes sense to ask: what truths does this principle hide, and for whose benefit?

Unfortunately, when it comes to GDP growth as the accepted measure of a healthy economy, Raworth leaves out an important part of the story.

The concept of Gross Domestic Product has its roots in the 1930s, when statisticians were looking for ways to quantify economic activity, making temporal trends easier to discern. Simon Kuznets developed a way to calculate Gross National Product – the total of all income generated worldwide by US residents.

As Raworth stresses, Kuznets himself was clear that his national income tally was a very limited way of measuring an economy.

Emphasising that national income captured only the market value of goods and services produced in an economy, he pointed out that it therefore excluded the enormous value of goods and services produced by and for households, and by society in the course of daily life. … And since national income is a flow measure (recording only the amount of income generated each year), Kuznets saw that it needed to be complemented by a stock measure, accounting for the wealth from which it was generated ….” (Doughnut Economics, page 34; emphasis mine)

The distinction between flows and stocks is crucial. Imagine a simple agrarian nation which uses destructive farming methods to work its rich land. For a number of years it may earn increasingly high income – the flow – though its wealth-giving topsoil – the stock – is rapidly eroding. Is this country getting richer or poorer? Measured by GDP alone, this economy is healthy as long as current income grows; no matter that the topsoil, and future prospects, are blowing away in the wind.

In the years immediately preceding and following World War II, GDP became the primary measure of economic health, and it became political and economic orthodoxy that GDP should grow every year. (To date no western leader has ever campaigned by promising “In my first year I will increase GDP by 3%, in my second year by 2%, in my third year it will grow by 1%, and by my fourth year I will have tamed GDP growth to 0!”)

What truth does this reliance on GDP hide, and for whose benefit? The answers are fairly obvious, in my humble opinion: a myopic focus on GDP obscured the inevitability of resource depletion, for the benefit of the fossil fuel and automative interests who dominated the US economy in the mid-twentieth century.

For context, in 1955 the top ten US corporations by number of employees included: General Motors, Chrysler, Standard Oil of New Jersey, Amoco, Goodyear and Firestone. (Source: 24/7 Wall St)

In 1960, the top ten largest US companies by revenue included General Motors, Exxon, Ford, Mobil, Gulf Oil, Texaco, and Chrysler. (Fortune 500)

These companies, plus the steel companies that made sheet metal for cars and the construction interests building the rapidly-growing network of roads, were clear beneficiaries of a new way of life that consumed ever-greater quantities of fossil fuels.

In the decades after World War II, the US industrial complex threw its efforts into rapid exploitation of energy reserves, along with mass production of machines that would burn that energy as fast as it could be pulled out of the ground. This transformation was not a simple result of “the invisible hand of the free market”; it relied on the enthusiastic collaboration of every level of government, from local zoning boards, to metropolitan transit authorities, to state and federal transportation planners.

But way back then, was it politically necessary to distract people from the inevitability of resource depletion?

The Peak Oil movement in the 1930s

From the very beginnings of the petroleum age, there were prominent voices who saw clearly that exponential growth in use of a finite commodity could not go on indefinitely.

One such voice was William Jevons, now known particularly for the “Jevons Paradox”. In 1865 he argued that since coal provided vastly more usable energy than industry had previously been able to harness, and since this new-found power was the very foundation of modern industrial civilization, it was particularly important to a nation to prudently manage supplies:

Describing the novel social experience that coal and steam power had created, the experience that today we would call ‘exponential growth’, in which practically infinite values are reached in finite time, Jevons showed how quickly even very large stores of coal might be depleted.” (Timothy Mitchell, Carbon Democracy, pg 129)

In the 1920s petroleum was the new miracle energy source, but thoughtful geologists and economists alike realized that as a finite commodity, petroleum could not fuel infinite growth.

Marion King Hubbert was a student in 1926, but more than sixty years later he still recalled the eye-opening lesson he received when a professor asked pupils to consider the implications of ongoing rapid increases in the consumption of coal and oil resources.

As Mason Inman relates in his excellent biography of Hubbert,

When a quantity grows by a constant percentage each year, its history forms a straight line on a semilogarithmic graph. Hubbert plotted the points for coal, year after year, and found a fairly straight line that persisted for several decades: a continual growth rate of around 6 percent a year. At that rate, the production doubled about every dozen years. When he looked at this graph, it was obvious to him that such rapid growth could persist for decades – his graph showed that had already happened – but couldn’t continue forever.” (The Oracle of Oil, 2016, pg 19)

Hubbert soon learned that there were many others who shared his concerns. This thinking coalesced in the 1930s in a very popular movement known as Technocracy. They argued that wealth depended primarily not on the circulation of money, but on the flow of energy.

The leaders of Technocracy, including Hubbert, were soon speaking to packed houses and were featured in cover stories in leading magazines. Hubbert was also tasked with producing a study guide that interested people could work through at home.

In the years prior to the Great Depression, people had become accustomed to economic growth of about 5% per year. Hubbert wanted people to realize it made no sense to take that kind of growth for granted.

“It has come to be naively expected by our business men and their apologists, the economists, that such a rate of growth was somehow inherent in the industrial processes,” Hubbert wrote. But since Earth and its physical resources are finite, he said, infinite growth is an impossibility.

In short, Technocracy pointed out that the fossil fuel age was likely to be a flash in the pan, historically speaking – unless the nation’s fuel reserves were managed carefully by engineers who understood energy efficiency and depletion.

Without sensible accounting and allocation of the true sources of a nation’s wealth – its energy reserves – private corporations would rake in massive profits for a few decades and two or three generations of Americans might prosper, but in the longer term the nation would be “burning its capital”.

Full speed ahead

After the convulsions of the Depression and World War II, the US emerged with the same leading corporations in an even more dominant position. Now the US had control, or at least major influence, not only over rich domestic fossil fuel reserves, but also the much greater reserves in the Middle East. And as the world’s greatest military and financial power, they were in a position to set the terms of trade.

For fossil fuel corporations the major problem was that oil was temporarily too cheap. It came flowing out of wells so easily and in such quantity that it was often difficult to keep the price up. It was in their interests that economies consume oil at a faster rate than ever before, and that the rate of consumption would speed up each year.

Fortunately for these interests, a new theory of economics had emerged just in time.

In this new theory, economists should not worry about measuring the exhaustion of resources. In Timothy Mitchell’s words, “Economics became instead a science of money.”

The great thing about money supply was that, unlike water or land or oil, the quantity of money could grow exponentially forever. And as long as one didn’t look too far backwards or forwards, it was easy to imagine that energy resources would prove no barrier. After all, for several decades, the price of oil had been dropping.

So although increasing quantities of energy were consumed, the cost of energy did not appear to represent a limit to economic growth. … Oil could be treated as something inexhaustible. Its cost included no calculation for the exhaustion of reserves. The growth of the economy, measured in terms of GNP, had no need to account for the depletion of energy resources.” (Carbon Democracy, pg 140)

GDP was thus installed as the supreme measure of an economy, with continuous GDP growth the unquestionable political goal.

A few voices dissented, of course. Hubbert warned in the mid-1950s that the US would hit the peak of its conventional fossil fuel production by the early 1970s, a prediction that proved correct. But large quantities of cheap oil remained in the Middle East. Additional new finds in Alaska and the North Sea helped to buy another couple of decades for the oil economy (though these fields are also now in decline).

Thanks to the persistent work of a small number of researchers who called themselves “ecological economists”, a movement grew to account for stocks of resources, in addition to tallying income flows in the GDP. By the early 1990s, the US Bureau of Economic Analysis gave its blessing to this effort.

In April 1994 the Bureau published a first set of tables called Integrated Environmental-Economic System of Accounts (IEESA).

The official effort was short-lived indeed. As described in Beyond GDP,

progress toward integrated environmental-economic accounting in the US came to a screeching halt immediately after the first IEESA tables were published. The US Congress responded swiftly and negatively. The House report that accompanied the next appropriations bill explicitly forbade the BEA from spending any additional resources to develop or extend the integrated environmental and economic accounting methodology ….” (Beyond GDP, by Heun, Carbajales-Dale, Haney and Roselius, 2016)

All the way through Fiscal Year 2002, appropriations bills made sure this outbreak of ecological economics was nipped in the bud. The bills stated,

The Committee continues the prohibition on use of funds under this appropriation, or under the Census Bureau appropriation accounts, to carry out the Integrated Environmental-Economic Accounting or ‘Green GDP’ initiative.” (quoted in Beyond GDP)

One can only guess that, when it came to contributing to Congressional campaign funds, the struggling fossil fuel interests had somehow managed to outspend the deep-pocketed biophysical economists lobby.

S-curves and other paths

With that lengthy detour complete, we are ready to rejoin Raworth and Doughnut Economics.

The final chapter is entitled “Be Agnostic About Growth: from growth addicted to growth agnostic”.

This sounds like a significant improvement over current economic orthodoxy – but I found this section weak in several ways.

First, it is unclear just what it is that we are to be agnostic about. While Raworth has made clear earlier in the book why GDP is an incomplete and misleading measure of an economy, in the final chapter GDP growth is nevertheless used as the only significant measure of economic growth. Are we to be agnostic about “GDP growth”, which might well be meaningless anyway? Or should we be agnostic about “economic growth”, which might be something quite different and quite a bit more essential – especially to the hundreds of millions of people still living without basic necessities?

Second, Raworth may be agnostic about growth, but she is not agnostic about degrowth. (She has discussed elsewhere why she can’t bring herself to use the word “degrowth”.) True, she remarks at one point that “I mean agnostic in the sense of designing an economy that promotes human prosperity whether GDP is going up, down, or holding steady.” Yet in the pictures she draws and in the ensuing discussion, there is no clear recognition either that degrowth might be desirable, or that degrowth might be forced on us by biophysical realities.

She includes two graphs for possible paths of economic growth –  with growth measured here simply by GDP.

Source: Doughnut Economics, page 210 and page 214

As she notes, the first graph shows GDP increasing at steady annual percentage. While the politicians would like us to believe this is possible and desirable, the graph showing what quickly becomes a near-vertical climb is seldom presented in economics textbooks, as it is clearly unrealistic.

The second graph shows GDP growing slowly at first, then picking up speed, and then leveling off into a high but steady state with no further growth. This path for growth is commonly seen and recognized in ecology. The S-curve was also recognized by pre-20th-century economists, including Adam Smith and John Stuart Mill, as the ideal for a healthy economy.

I would concur that an S-curve which lands smoothly on a high plateau is an ideal outcome. But can we take for granted that this outcome is still possible? And do these two paths – continued exponential growth or an S-curve – really exhaust the conceptual possibilities that we should consider?

On the contrary, we can look back 80 years to the Technocracy Study Course for an illustration of varied and contrasting paths of economic growth and degrowth.

Source: The Oracle of Oil, page 58

M. King Hubbert produced this set of graphs to illustrate what can be expected with various key commodities on which a modern industrial economy depends – and by extension, what might happen with the economy as a whole.

While pure exponential growth is impossible, the S-curve may work for a dependably renewable resource, or a renewable-resource based economy. However, the next possibility – with a rise, peak, decline, and then a leveling off – is also a common scenario. For example, a society may harvest increasing amounts of wood until the regenerating power of the forests are exceeded; the harvest must then drop before any production plateau can be established.

The bell curve which starts at zero, climbs to a high peak, and drops back to zero, could characterize an economy which is purely based on a non-renewable resource such as fossils fuels. Hopefully this “decline to zero” will remain a theoretical conception, since no society to date has run 100% on a non-renewable resource. Nevertheless our fossil-fuel-based industrial society will face a severe decline unless we can build a new energy system on a global scale, in very short order.

This range of economic decline scenarios is not really represented in Doughnut Economics. That may have something to do with the design of the title metaphor.

While ecological overshoot, on the outside of the doughnut, represents things we should not do, the diagram doesn’t have a way of representing the things we can not do.

We should not continue to burn large quantities of fossil fuel because that will destabilize the climate that our children and grandchildren inherit. But once our cheaply accessible fossil fuels are used up, then we can not consume energy at the same frenetic pace that today’s wealthy populations take for granted.

The same principle applies to many essential economic resources. As long as there is significant fertility left in farmland, we can choose to farm the land with methods that produce a high annual return even though they gradually strip away the topsoil. But once the topsoil is badly depleted, then we no longer have a choice to continue production at the same level – we simply need to take the time to let the land recover.

In other words, these biophysical realities are more fundamental than any choices we can make – they set hard limits on which choices remain open to us.

The S-curve economy may be the best-case scenario, an outcome which could in principle provide global prosperity with a minimum of system disruption. But with each passing year during which our economy is based overwhelmingly on rapidly depleting non-renewable resources, the smooth S-curve becomes a less likely outcome.

If some degree of economic decline is unavoidable, then clear-sighted planning for that decline can help us make the transition a just and peaceful one.

If we really want to think like 21st century economists, don’t we need to openly face the possibility of economic decline?

 

Top photo: North Dakota State Highway 22, June 2014. (click here for larger view)

Guns, energy, and the coin of the realm

Also published at Resilience.org.

While US debt climbs to incomprehensible heights, US banking authorities continue to pump new money into the economy. How can they do it? David Graeber sees a  simple explanation:

There’s a reason why the wizard has such a strange capacity to create money out of nothing. Behind him, there’s a man with a gun.” (Debt: The First 5,000 Years, Melville House, 2013, pg 364)

In part one of this series, we looked at the extent of violence in the “American Century” – the period since World War II in which the US has been the number one superpower, and in which US garrisons have ringed the world. In part two we looked at the role of energy supplies in propelling the US to power, the rapid drawdown of energy supplies in the US post-WWII, and the more recent explosion of US debt.

In this concluding installment we’ll look at the links between military power and financial power.

A new set of financial institutions arose at the end of World War II, and for obvious reasons the US was ‘first among equals’ in setting the rules. Not only was the US in military occupation of Germany and Japan, but the US also had the financial capital to help shattered countries –whether on the war’s winning or losing sides – in reconstructing their infrastructures and restarting their economies.

The US was also able to offer military protection to many countries including previous mortal enemies. This meant that these countries could avoid large military outlays – but also that their elites were in no position to challenge US supremacy.

That being said, there were challenges both large and small in dozens of nations, particularly from the grass roots. The US exercised political power, both soft and hard, in attempts to influence the directions of scores of countries around the world. Planting of media reports, surreptitious aid to favoured electoral candidates, dirty tricks to discredit candidates seen as threatening, military aid and training to dictatorships and police forces who could put down movements for social justice, planning and helping to implement coups, and full-fledged military invasion – this range of intervention techniques resulted in hundreds of thousands, if not millions, of deaths. Cataloguing the bloody side of US “leadership of the free world” is the task taken on so ably by John Dower in The Violent American Century.

Dollars for oil

One of the rules of the game grew in importance with each passing decade. In Timothy Mitchell’s words,

Under the arrangements that governed the international oil trade, the commodity was sold in the currency not of the country where it was produced, nor of the place where it was consumed, but of the international companies that controlled production. ‘Sterling oil’, as it was known (principally oil from Iran), was traded in British pounds, but the bulk of global sales were in ‘dollar oil’.” (Carbon Democracy, Verso, 2013, pg 111)

As David Graeber’s Debt explains in detail, the ability to force people to acquire and use the ruler’s currency has, throughout history, been a key mechanism for extracting tribute from subject populations.

In today’s global economy, that is why the pricing of oil in dollars has been so important for the US. Again in Timothy Mitchell’s words:

Europe and other regions had to accumulate dollars, hold them and then return them to the United States in payment for oil. Inflation in the United States slowly eroded the value of the dollar, so that when these countries purchased oil, the dollars they used were worth less than their value when they acquired them. These seigniorage privileges, as they are called, enabled Washington to extract a tax from every other country in the world …. (Carbon Democracy, pg 120)

As Greg Grandin explains, the oil-US dollar relationship grew in importance even as OPEC countries were able to force big price increases:

With every rise in the price of oil, oil-importing countries had to borrow more to meet their energy needs. With every petrodollar placed in New York banks, the value of the US currency increased, and with it the value of the dollar-denominated debt that poor countries owed to those banks.” (“Down From The Mountain”, London Review of Books, June 19, 2017)

But the process did take on another important twist after US domestic oil production peaked and imports from Saudi Arabia soared in the 1970s. Although the oil trade continued to support the value of the US dollar, the US was now sending a lot more of those dollars to oil exporting countries. The Saudis, in particular, accumulated US dollars so fast there wasn’t a productive way for them to circulate these dollars back into the US by purchasing US-made goods. The burgeoning US exports of munitions provided a solution. Mitchell explains:

As the producer states gradually forced the major oil companies to share with them more of the profits from oil, increasing quantities of sterling and dollars flowed to the Middle East. To maintain the balance of payments and the viability of the international financial system, Britain and the United States needed a mechanism for these currency flows to be returned. … Arms were particularly suited to this task of financial recycling, for their acquisition was not limited by their usefulness. The dovetailing of the production of petroleum and the manufacture of arms made oil and militarism increasingly interdependent.” (Carbon Democracy, pg 155-156)

He adds, “The real value of US arms exports more than doubled between 1967 and 1975, with most of the new market in the Middle East.”

An F-15 Eagle aircraft of the Royal Saudi Air Force takes off during Operation Desert Shield, 1991. (Source: Wikimedia Commons)

Fast forward to today. Imported oil is a critical factor in the US economy, in spite of a supply blip from fracking. US industry leads the world in the export of weapons; the top three buyers, and five of the top ten buyers, are in the Middle East. (Source: CNN, May 25, 2016) Yet US arms sales are dwarfed by US military expenditures, which are roughly double in real terms what they were in the 1960s. (Source: Time, July 16, 2013)

Finally, US national debt, in 1983 dollars, is about 10 times as high as it was from 1950 to 1980. In other words the US government, along with its banking and military complexes, has been living far beyond its means (making bankruptcy king Donald Trump a fitting figurehead). (Source: Stephen Bloch, Adelphi University)

Yet the game goes on. As David Graeber sees it,

American imperial power is based on a debt that will never – can never – be repaid. Its national debt has become a promise, not just to its own people, but to the nations of the entire world, that everyone knows will not be kept.

At the same time, U.S. policy was to insist that those countries relying on U.S. treasury bonds as their reserve currency behaved in exactly the opposite way: observing tight money policies and scrupulously repaying their debts ….” (Debt, pg 367)

We’ll close with two speculations on how the “American century” may come to an end.

US supremacy rests on interrelated dominance in military power, financial power, and influence over fossil fuel energy markets. At present the US financial system can create ever larger sums of money, and the rest of the world may have no immediately preferable options than to continue buying US debt. But just as you can’t eat money, you can’t burn it in an electricity generator, a diesel truck, or a bomber flying sorties to a distant land. So no amount of financial wizardry will sustain the current outsized industrial economy or its military subsection, once prime fossil fuel sources have been tapped out.

On the other hand, suppose low-carbon renewable energy technologies improve so rapidly that they can replace fossil fuels within a few decades. This would be a momentous energy transition, and might also lead to a momentous transition in geopolitics.

In recent years, and especially under the Trump administration, the US is ceding renewable energy technology leadership to other countries, especially China. If many countries free themselves from fossil-fuel dependence, and they no longer need US dollars to purchase their energy needs, a pillar of US supremacy will fall.

Top photo: Commemorative silver dollar sold by the US Mint, 2012.

Fossil fuel empire: a world of vulnerability

Also published at Resilience.org.

“It’s all about the oil,” many commentators said about the US assault on Iraq in 2003.

Attributing a war to a single cause is almost always an oversimplification, but protecting access to the 20th century’s most important energy source has been a priority of US foreign policy since World War II.

In part one of this series we considered the effects of the US military complex which has ringed the world for the past 75 years. This complex has depended on vast amounts of fossil fuel energy to move troops and munitions, and the US became a world power in significant part because of its endowment of oil.

As Daniel Yergin recounts in The Prize: The Epic Quest for Oil, Money & Power

Petroleum was central to the course and outcome of World War II in both the Far East and Europe. The Japanese attacked Pearl Harbor to protect their flank as they grabbed for the petroleum resources of the East Indies. Among Hitler’s most important strategic objectives in the invasion of the Soviet Union was the capture of the oil fields in the Caucasus. But America’s predominance in oil proved decisive, and by the end of the war German and Japanese fuel tanks were empty.” (The Prize, Simon & Schuster, 1990, pg 13)

At the end of World War II the US was not only the world’s preeminent military force, but its industrial capacity was undamaged by war and it was running on seemingly abundant supplies of cheap domestic oil.

Spurred on by oil and car companies who had the most to gain from a high-energy way of life, the US embarked on a building spree of far-flung suburbs, interstate highways, and airports that allowed long-distance flight to become a routine activity.

This hyper-consumption was bolstered by a new economic orthodoxy which saw no need to factor in energy depletion when accounting for national wealth, and which portrayed exponential economic growth as a phenomenon that could and should continue decade after decade.

It took barely a generation, of course, for the US economy to suck up the bulk of its cheap domestic oil – conventional oil production peaked in the US in 1971. Did Americans then conclude they should change the basis of their economy, and make peace with reduced energy consumption? Far from it. Dependence on imported oil has now been a central feature of the US economy for fifty years.

Gap between US oil consumption and production. Chart by An Outside Chance for the post Alternative Geologies: Trump’s “America First Energy Plan”, from stats on ycharts.com

 

A world of vulnerability

The huge military complex which protects essential oil supply routes is sometimes seen as a sign of US strength, but it can just as accurately be seen as a sign of US weakness.

In a 2009 report entitled “Powering America’s Defense: Energy and the Risks to National Security”, a panel of twelve retired generals and admirals notes that “The U.S. consumes 25 percent of the world’s oil production, yet controls less than 3 percent of an increasingly tight supply.” This voracious appetite for oil, they say, is a dangerous vulnerability:

As we consider America’s current energy posture, we do so from a singular perspective: We gauge our energy choices solely by their impact on America’s national security. Our dependence on foreign oil reduces our international leverage, places our troops in dangerous global regions, funds nations and individuals who wish us harm, and weakens our economy; our dependency and inefficient use of oil also puts our troops at risk.” (Introduction to Powering America’s Defense)

One source of imported oil has outranked all others for the US and its western European allies. The US was already consolidating its “special relationship” with Saudi Arabia in the 1930s, in the first years of that country’s existence. As Timothy Mitchell describes this relationship,

Aramco [Arabian-American Oil Company] paid the oil royalty not to a national government but to a single household, that of Ibn Saud, who now called himself king and renamed the country … the ‘Kingdom of Saudi Arabia’. … This ‘privatisation’ of oil money was locally unpopular, and required outside help to keep it in place. In 1945 the US government established its military base at Dhahran, and later began to train and arm Ibn Saud’s security forces …. The religious establishment, on the other hand, created the moral and legal order of the new state, imposing the strict social regime that maintained discipline in the subject population and suppressed political dissent.” (Timothy Mitchell, Carbon Democracy, Verso, 2013, pg 210-211)

The alliance between a self-styled liberal democracy and an theocratic autocracy has not been a marriage made in heaven. But in spite of many points of tension the relationship has benefited powerful forces in both countries and has endured for most of the age of oil.

The need to protect US access to the world’s largest sources of conventional oil was formally recognized in the Carter Doctrine:

An attempt by any outside force to gain control of the Persian Gulf region will be regarded as an assault on the vital interests of the United States of America, and such an assault will be repelled by any means necessary, including military force.” (US President Jimmy Carter in his State of the Union Address, January 1980)

Ironically, this doctrine led the US to begin supporting the mujahideen, Islamic fundamentalists who were fighting the Soviet Union in Afghanistan. And ironically, after the Soviet-Afghan war ended one of the major irritants for the formerly lauded “freedom fighters” was the heavy military presence of the infidel United States in Saudi Arabia. The result has been almost 20 years of continuous warfare between the US and various offshoots of the mujahideen, with no prospect of victory for the US.

The costs of these wars, merely in dollar terms, have been staggering. While US military expenditures have remained high ever since World War II, these costs have recently gone through the roof. An analysis of military spending by Time in 2013 found that inflation-adjusted military spending in the 2000s was approximately twice as high as military spending in the 1960s, during the nuclear face-off with Russia and the massive deployment in Indochina.

In sum, the US has been importing increasing quantities of increasingly expensive oil for decades. During the same years US military spending has soared. Does this sound like a recipe for solvency? You might well wonder if it’s just coincidence that US national debt has soared during these years.

US national debt converted to 1983 dollars and plotted on logarithmic scale – each step up the ladder is 10 times as high as the previous step – by Stephen Bloch of Adelphi University.

 

Recall the curious formulation by John Dower cited in the first installment of this series:

Creating a capacity for violence greater than the world has ever seen is costly – and remunerative.” (The Violent American Century, pg 12, emphasis mine)

How is this world-wide military occupation remunerative? In our next installment we’ll look at the tie-in between the power that grows out of the barrel of a gun, and the power that comes with control of currency.

Part Three of this series

 

Top photo: well head at the Big Hill, Texas site of the US Strategic Petroleum Reserve. The Big Hill facility stores up to 160 million barrels of oil. The four sites of the Strategic Petroleum Reserve were developed in the 1970s, amid fears that a disruption in global supply lines could leave the US dangerously vulnerable. Photo from US Office of Fossil Energy.

The stratospheric costs of The American Century

Also published at Resilience.org.

“Political power grows out of the barrel of a gun,” Chairman Mao famously stated in 1927.

Political power grows out of a barrel of oil – that’s an important theme in Daniel Yergin’s classic book The Prize: The Epic Quest for Oil, Money & Power.

Political power, including the use of state violence, goes hand in hand with control of authorized currency – that’s one of the key lessons of David Graeber’s Debt: The First 5,000 Years.

Guns, energy, money – each of these factors of power comes to mind in reading the recently released book by John Dower, The Violent American Century: War And Terror Since World War Two. (Chicago, Haymarket Books, 2017)

This brief book keeps a tight focus: cataloguing the extent of violence associated with the US role as the world’s dominant superpower. Dower avoids many closely related questions, such as Which persons or sectors in the US benefit most from military conflict? or, Was there justification for any of the violent overseas adventures by US forces in the past 75 years? or, Might the world have been more, or less, violent if the US had not been the dominant superpower?

It may be easy to forget, in Canada or western Europe or especially in the United States, that wars big and small have been raging somewhere in the world nearly every year through our lifetimes. Dower’s book is prompted in part by the recently popularized notion that on a world historical scale, violence is recently at an all-time low. Stephen Pinker, in his 2011 book The Better Angels of Our Nature, marshaled both statistics and anecdotes to advance the view that “today we may be living in the most peaceable era in our species’ existence.”

Dower doesn’t try to definitively refute the idea of a “Long Peace”, but he does ask us to question widely held assumptions.

He begins with the important point that if you start with the unprecedented mass slaughter of World War II as a baseline, it’s easy to make a case that succeeding decades have been relatively peaceful.

Yet one of the key military strategies used by the US in World War II was retained in both practice and theory by subsequent US warlords – aerial bombardment of civilian populations.

By the time the United States began carpet-bombing Japan, ‘industrial war’ and psychological warfare were firmly wedded, and the destruction of enemy morale by deliberately targeting densely populated urban centers had become standard operating procedure. US air forces would later carry this most brutal of inheritances from World War Two to the populations of Korea and Indochina.” (The Violent American Century, pg 22)

The result of this policy carry-over was that

During the Korean War … the tonnage of bombs dropped by US forces was more than four times greater than had been dropped on Japan in 1945. … In the Vietnam War … an intensive US bombing campaign that eventually extended to Cambodia and Laos dropped more than forty times the tonnage of bombs used on Japan.” (The Violent American Century, pg 43)

The massive bombardments failed to produce unambiguous victories in Korea or in Indochina, but it’s hard to look at these wars and avoid the conclusion that the scope and scale of violence had remained terribly high.

Meanwhile US war planners were preparing for destruction on an even greater scale. Both US and Soviet nuclear forces held the capability of destroying all human life – and yet they continued to build more nuclear missiles and continued to discuss whether they would ever launch a first strike.

By the time of his retirement, former Strategic Air Command director General (George) Lee Butler had become an advocate of nuclear abolition. In his insider’s view, “mankind escaped the Cold War without a nuclear holocaust by some combination of diplomatic skill, blind luck and divine intervention, probably the latter in greatest proportion.”

Yet the danger remains. Even Nobel Peace Prize winner Barack Obama, who stirred hopes for peace in 2009 by calling for abolition of nuclear weapons, left office having approved a $1 trillion, 30-year program of upgrading US nuclear weapons.

Though the Cold War ended without conflagration between the world’s major powers, a CIA tabulation listed 331 “Major Episodes of Political Violence” between 1946 and 2013. The US armed, financed and/or coached at least one side in scores of these conflicts, and participated more directly in dozens. This history leads Dower to conclude

Branding the long postwar era as an epoch of relative peace is disingenuous …. It also obscures the degree to which the United States bears responsibility for contributing to, rather than impeding, militarization and mayhem after 1945.” (The Violent American Century, pg 3)

Dower also notes that violence doesn’t always end in death – sometimes it leads to flight. In this regard the recent, rapid increase in numbers of refugees calls into question the idea of a new era of peace. The United Nations High Commissioner for Refugees recently reported that the number of forcibly displaced individuals “had surpassed sixty million and was the highest level recorded since World War Two and its immediate aftermath.”

The wages of war

Since the US victory in World War II, the nation has responded by building an ever larger, ever more extensive military presence around the world. By the early 2000s, according to former CIA consultant Chalmers Johnson, the US owned or rented more than 700 military bases in 130 countries.

Dower gives a brief tally of the financial costs to the US of this military occupation of the globe. In addition to the “base” defense department budget of about $600 billion per year, Dower says many extra expenses include “contingency” costs of engagements in the Middle East, care for veterans, the “black budget” for the CIA, and interest on the military component of the national debt, pushing the cost of the US military complex to around $1 trillion per year.

He concludes, “Creating a capacity for violence greater than the world has ever seen is costly – and remunerative.”

In coming installments of this essay we’ll consider especially those last three words: “costly and remunerative”. Who pays for and who benefits from the massive maintenance and exercise of military muscle, and over what time scale? In doing so, we’ll explore the interrelationships of three types of power: power from the barrel of a gun, power that comes from a barrel of oil, and power that comes from control of the monetary system.

Part Two of this series

Top photo: U.S. Air Force Republic F-105D Thunderchief fighters refuel from a Boeing KC-135A Stratotanker en route to North Vietnam in 1966. Photo in Wikimedia Commons is from US National Archives and Records Administration. A 2007 report for the Brookings Institution found that the Air Force alone used 52% of the fuel burned by the US government, and that all branches of the Department of Defense together burned 93% of US government fuel consumption. (“Department of Defense Energy Strategy: Teaching an Old Dog New Tricks”)

Energy And Civilization: a review

Also published at Resilience.org and BiophysEco.

If you were to find yourself huddled with a small group of people in a post-crash, post-internet world, hoping to recreate some of the comforts of civilization, you’d do well to have saved a printed copy of Vaclav Smil’s Energy and Civilization: A History.

Smil’s new 550-page magnum opus would help you understand why for most applications a draft horse is a more efficient engine than an ox – but only if you utilize an effective harness, which is well illustrated. He could help you decide whether building a canal or a hard-topped road would be a more productive use of your energies. When you were ready to build capstans or block-and-tackle mechanisms for accomplishing heavy tasks, his discussion and his illustrations would be invaluable.

But hold those thoughts of apocalypse for a moment. Smil’s book is not written as a doomer’s handbook, but as a thorough guide to the role of energy conversions in human history to date. Based on his 1994 book Energy in World History, the new book is about 60% longer and includes 40% more illustrations.

Though the initial chapters on prehistory are understandably brief, Smil lays the groundwork with his discussion of the dependency of all living organisms on their ability to acquire enough energy in usable forms.

The earliest humanoids had some distinct advantages and liabilities in this regard. Unlike other primates, humans evolved to walk on two feet all the time, not just occasionally. Ungainly though this “sequence of arrested falls” may be, “human walking costs about 75% less energy than both quadrupedal and bipedal walking in chimpanzees.” (Energy and Civilization, pg 22)

What to do with all that saved energy? Just think:

The human brain claims 20–25% of resting metabolic energy, compared to 8–10% in other primates and just 3–5% in other mammals.” (Energy and Civilization, pg 23)

In his discussion of the earliest agricultures, a recurring theme is brought forward: energy availability is always a limiting factor, but other social factors also come into play throughout history. In one sense, Smil explains, the move from foraging to farming was a step backwards:

Net energy returns of early farming were often inferior to those of earlier or concurrent foraging activities. Compared to foraging, early farming usually required higher human energy inputs – but it could support higher population densities and provide a more reliable food supply.” (Energy and Civilization, pg 42)

The higher population densities allowed a significant number of people to work at tasks not immediately connected to securing daily energy requirements. The result, over many millennia, was the development of new materials, tools and processes.

Smil gives succinct explanations of why the smelting of brass and bronze was less energy-intensive than production of pure copper. Likewise he illustrates why the iron age, with its much higher energy requirements, resulted in widespread deforestation, and iron production was necessarily very limited until humans learned to exploit coal deposits in the most recent centuries.

Cooking snails in a pot over an open fire. In Energy and Civilization, Smil covers topics as diverse as the importance of learning to use fire to supply the energy-rich foods humans need; the gradual deployment of better sails which allowed mariners to sail closer to the wind; and the huge boost in information consumption that occurred a century ago due to a sudden drop in the energy cost of printing. This file comes from Wellcome Images, a website operated by Wellcome Trust, a global charitable foundation based in the United Kingdom, via Wikimedia Commons.

Energy explosion

The past two hundred years of fossil-fuel-powered civilization takes up the biggest chunk of the book. But the effective use of fossil fuels had to be preceded by many centuries of development in metallurgy, chemistry, understanding of electromagnetism, and a wide array of associated technologies.

While making clear how drastically human civilizations have changed in the last several generations, Smil also takes care to point out that even the most recent energy transitions didn’t take place all at once.

While the railways were taking over long-distance shipments and travel, the horse-drawn transport of goods and people dominated in all rapidly growing cities of Europe and North America.” (Energy and Civilization, pg 185)

Likewise the switches from wood to coal or from coal to oil happened only with long overlaps:

The two common impressions – that the twentieth century was dominated by oil, much as the nineteenth century was dominated by coal – are both wrong: wood was the most important fuel before 1900 and, taken as a whole, the twentieth century was still dominated by coal. My best calculations show coal about 15% ahead of crude oil …” (Energy and Civilization, pg 275)

Smil draws an important lesson for the future from his careful examination of the past:

Every transition to a new form of energy supply has to be powered by the intensive deployment of existing energies and prime movers: the transition from wood to coal had to be energized by human muscles, coal combustion powered the development of oil, and … today’s solar photovoltaic cells and wind turbines are embodiments of fossil energies required to smelt the requisite metals, synthesize the needed plastics, and process other materials requiring high energy inputs.” (Energy and Civilization, pg 230)

A missing chapter

Energy and Civilization is a very ambitious book, covering a wide spread of history and science with clarity. But a significant omission is any discussion of the role of slavery or colonialism in the rise of western Europe.

Smil does note the extensive exploitation of slave energy in ancient construction works, and slave energy in rowing the war ships of the democratic cities in ancient Greece. He carefully calculates the power output needed for these projects, whether supplied by slaves, peasants, or animals.

In his look at recent European economies, Smil also notes the extensive use of physical and child labour that occurred simultaneously with the growth of fossil-fueled industry. For example, he describes the brutal work conditions endured by women and girls who carried coal up long ladders from Scottish coal mines, in the period before effective machinery was developed for this purpose.

But what of the 20 million or more slaves taken from Africa to work in the European colonies of the “New World”? Did the collected energies of all these unwilling participants play no notable role in the progress of European economies?

Likewise, vast quantities of resources in the Americas, including oil-rich marine mammals and old-growth forests, were exploited by the colonies for the benefit of European nations which had run short of these important energy commodities. Did this sudden influx of energy wealth play a role in European supremacy over the past few centuries? Attention to such questions would have made Energy and Civilization a more complete look at our history.

An uncertain future

Smil closes the book with a well-composed rumination on our current predicaments and the energy constraints on our future.

While the timing of transition is uncertain, Smil leaves little doubt that a shift away from fossil fuels is necessary, inevitable, and very difficult. Necessary, because fossil fuel consumption is rapidly destabilizing our climate. Inevitable, because fossil fuel reserves are being depleted and will not regenerate in any relevant timeframe. Difficult, both because our industrial economies are based on a steady growth in consumption, and because much of the global population still doesn’t have access to a sufficient quantity of energy to provide even the basic necessities for a healthy life.

The change, then, should be led by those who are now consuming quantities of energy far beyond the level where this consumption furthers human development.

Average per capita energy consumption and the human development index in 2010. Smil, Energy and Civilization, pg 363

 

Smil notes that energy consumption rises in correlation with the Human Development Index up to a point. But increases in energy use beyond, roughly the level of present-day Turkey or Italy, provide no significant boost in Human Development. Some of the ways we consume a lot of energy, he argues, are pointless, wasteful and ineffective.

In affluent countries, he concludes,

Growing energy use cannot be equated with effective adaptations and we should be able to stop and even to reverse that trend …. Indeed, high energy use by itself does not guarantee anything except greater environmental burdens.

Opportunities for a grand transition to less energy-intensive society can be found primarily among the world’s preeminent abusers of energy and materials in Western Europe, North America, and Japan. Many of these savings could be surprisingly easy to realize.” (Energy and Civilization, pg 439)

Smil’s book would indeed be a helpful post-crash guide – but it would be much better if we heed the lessons, and save the valuable aspects of civilization, before apocalypse overtakes us.

 

Top photo: Common factory produced brass olive oil lamp from Italy, c. late 19th century, adapted from photo on Wikimedia Commons.