Inequality, the climate crisis, and the frequent flier

ALSO PUBLISHED ON RESILIENCE

If we are to make rapid progress in reducing carbon emissions, and do so in an equitable way, does everybody need to give up flying?

No, not at all – because most people don’t fly anyway, and have never flown. And among those privileged enough to fly, only a small minority fly often.

If most people gave up flying that would have little impact on emissions – because most people fly seldom or never.

Yet major carbon emissions reductions need to happen within the next several years. That’s much faster than any revolutionary new aviation technologies can be developed, let alone rolled out on a large scale. The way to dramatically and quickly reduce aviation emissions is as simple as it is obvious: the small minority of people who fly frequently should give up most of their airline journeys.

We can see clearly where rapid progress might be made when we recognize the tight correlation between global wealth control and global emissions.

On a global scale, and also within most individual countries, both income and wealth is dramatically skewed in favour of a small percentage of the population.

In the same fashion, carbon dioxide emissions are dramatically skewed, as an overwhelming share of the emissions causing the climate crisis are due to the lifestyles of a small proportion of the population.

A relatively affluent minority of the world’s population takes nearly all of the world’s aviation journeys, and within that minority, a small percentage of people take by far the most flights.

Within that wealthiest and most polluting sliver of the world’s population, flying typically accounts for the biggest share of their generally outsize contributions to the climate crisis. Meaning, if they are to reduce their emissions to a level consistent with international climate accords, they will need to change their flying from a frequent, routine practice into a rare, exceptional practice, or cease from flying at all.

Yet in all the sectors that combine to steer our industrial societies, the people that have a significant share of influence typically belong to the frequent fliers club. That is true throughout the corporate world, in major news and entertainment media, in academia, in nearly every level of government in affluent countries, and among the socio-economic elites in non-affluent countries. In all these social sectors, it has become routine over the past 50 years to get on a plane and fly to some formerly distant place multiple times a year, whether for business or for leisure.

The preceding paragraphs outline a daunting list of topics to try to cover in one blog post. We’ll have help from some very useful graphs. Here goes ….

Follow the money

Since flying is an expensive habit, even in monetary terms, we would expect that most flying is done by the people with the most money. Here’s one way of visualizing who has the money:

Global income and wealth inequality, from the World Inequality Report 2022, by Lucas Chancel (lead author), Thomas Piketty, Emmanuel Saez, and Gabriel Zucman, page 10.

As the chart above indicates, money is overwhelmingly concentrated in the hands of a small percentage of the global population – wealth is heavily skewed by class. And as the chart below indicates, money-making activities are overwhelmingly concentrated in some countries – wealth is heavily skewed by geography.

GDP per capita for selected regions and countries, 2010 – 2020, graph from Our World In Data based on World Bank data. The world average for 2020 was $16,608, while GDP per capita in wealthy countries was from 2.5 to about 4 times as high.

Ready for a surprise? You never woulda guessed, but carbon emissions are skewed in roughly the same ways.

Global Carbon Inequality, 2019, from the World Inequality Report 2022, by Lucas Chancel (lead author), Thomas Piketty, Emmanuel Saez, and Gabriel Zucman, page 18.

 

Per capita emissions across the world, 2019, from the World Inequality Report 2022, by Lucas Chancel (lead author), Thomas Piketty, Emmanuel Saez, and Gabriel Zucman, page 19.

The “Global Carbon Inequality” chart tells us that one half of global population are responsible for only a small share, 12%, of global warming emissions. The other half are responsible for 88% of global warming emissions. And just 10% of the population are responsible for nearly half the emissions.

The “Per capita emissions across the world” shows the dramatic variance in emission levels from various geographic regions. It might come as no surprise that both the top 10% and the middle 40% groups in North America leave most of their international rivals in a cloud of fossil fuel smoke, so to speak. Those who are modestly well off, or rich, in the US and Canada tend to live in big houses; drive, a lot, in big cars or “light trucks”; and travel by air frequently.

And in all areas of the world, the top 10% of emitters have per capita emissions far in excess of the middle 40% or lower 50% groups.

What does this mean for our collective hopes of slowing down the accelerating climate crisis? It means that most of the emission reductions must come from a relatively small share of the global population – particularly from the top 10% on a global scale, and to a lesser but still significant extent from the middle 40% within wealthy countries.

Consider this chart from the World Inequality Report.

Per capita emissions reduction requirements, US & France, from the World Inequality Report 2022, by Lucas Chancel (lead author), Thomas Piketty, Emmanuel Saez, and Gabriel Zucman, page 128.

If we were to meet the emissions reduction targets set out for 2030 in the Paris Agreement in a fair and equitable way, the top 10% of people in the US would need to reduce their carbon footprints by 87%, and the middle 40% would need to reduce their carbon footprints by 54%. The lower 50% of the US population could actually increase their carbon footprints by 3% while being consistent with the Paris Agreement – if, that is, the upper 50% actually carried their fair share of the changes needed.

The story is much the same in France, with dramatic per capita emissions reductions needed from the top 50%.

For India and China, as shown below, the picture is significantly different.

Per capita emissions reduction requirements, India & China, from the World Inequality Report 2022, by Lucas Chancel (lead author), Thomas Piketty, Emmanuel Saez, and Gabriel Zucman, page 129.

In both India and China, the upper 10% would need to dramatically reduce their carbon footprints to be consistent with the Paris Agreement. However, both the middle 40% and the lower 50% in those countries could dramatically increase their carbon footprints in the next eight years, if the Paris Agreement targets were not only to be met, but met in an equitable way.

Imagine for a moment that the small minority of people with large carbon footprints, both globally and within countries, made a serious effort at reducing those footprints. What aspect of their lifestyles would be the most logical place to start?

Here, after what might have seemed like a long detour, we get back to the airport.

Panorama from inside Edinburgh air traffic control room, Oct 2013, photo by NATS – UK Air Traffic Control, licensed via CC BY-NC-ND 2.0, accessed on Flickr.

A high-level view

In spite of steep increases in aviation emissions in recent decades, direct emissions from aviation are still a small slice of overall global warming emissions. At the same time, among the world’s affluent classes, per capita emissions from aviation alone are much higher than the total per capita emissions of most people in much of the world.

The explanation lies here: only a small proportion of the world’s population flies at all, and among those, another small proportion takes most of the flights, the longest flights, and the flights that incur the largest per capita carbon footprints.

Even within high-income countries, less than half the population gets on a plane in a given year, according to a recent article in Global Environmental Change.

And on a global scale, Tom Otley reported in 2020,

“The research says that the share of the world’s population travelling by air in 2018 was just 11 per cent, with at most 4 per cent taking international flights.” (Business Traveller)

Can we conclude that 11 per cent of the people have an equal share of the aviation emissions? That would be deeply misleading, because most of those 11% take just the occasional flight, while a smaller number take many flights.

As reported in the article “A few frequent flyers ‘dominate air travel’” on BBC News, here’s how a small share of flyers in selected countries keep airports busy:

“In the UK, 70% of flights are made by a wealthy 15% of the population …. [I]n the US, just 12% of people take two-thirds of flights. … Canada: 22% of the population takes 73% of flights …. The Netherlands: 8% of people takes 42% of flights. … China: 5% of households takes 40% of flights. … India: 1% of households takes 45% of flights.”

But wait – there’s more! Stefan Gössling and Andreas Humpe explain in “The global scale, distribution and growth of aviation”, “The share of the fuel used by these [frequent] air travelers is likely higher, as more frequent fliers will more often travel business or first class ….”

Flying in more luxurious fashion comes at a huge environmental cost:

“The International Council on Clean Transportation (ICCT) (2014) estimates that the carbon footprint of flying business class, first class, or in a large suite is 5.3, 9.2 or 14.8 times larger than for flying in economy class.” (Gössling and Humpe)

Due to the frequency of their flights, plus the more luxurious seating accommodations often favoured by those who can afford many flights, about 10% of the most frequent fliers account for about half of all aviation emissions.

Gössling and Humpe refers to these most frequent fliers as “super emitters”, noting that “[S]uper emitters may contribute to global warming at a rate 225,000 times higher than the global poor” who have almost no carbon footprint.

To summarize: aviation accounts for a relatively small percentage of overall global warming emissions, because flying is a privilege enjoyed almost exclusively by a small percentage of the affluent classes. Yet among these classes, aviation results in a large share of personal carbon footprints, especially if flying is a regular occurrence.

Our World In Data states it starkly: “Air travel dominates a frequent traveller’s individual contribution to climate change.”

The same report adds, “The average rich person emits tonnes of CO2 from flying each year – this is equivalent to the total carbon footprint of tens or hundreds of people in many countries of the world.” (emphasis mine)

If we recall some figures from earlier in this post, those individuals in the US whose carbon footprints rank in the top 10% will need to reduce those footprints by 87%, for fair compliance with the Paris Agreement.

For most of those in the very-high-carbon-emissions bracket, a drastic reduction in flying will be a necessary, though not sufficient, lifestyle change in any future that includes climate justice.

• • •

Not so fast, frequent fliers might protest. Aren’t you overlooking the possibility, perhaps even the probability, that in the near future we will have a flourishing airline industry powered by clean electricity or clean hydrogen?

That’s too complicated a subject for a blog post that’s quite long enough already.

One recurring theme in this series has been the distinction between device-level changes and system-level changes. A speedy, safe, ocean-jumping airliner that burns no fossil fuel, if such an airliner were to exist, would be a great example of a device-level change.

I don’t expect to see such an airliner making commercially-viable trips within my lifetime. I’ll explain that skepticism in the next installment of this series on transportation.


Photo at top of page: Airbus airliners lined up at Chengdu, November 2015; photo by L.G. Liao, accessed at Wikimedia Commons.

Losing altitude

Travel as if every place matters.

ALSO PUBLISHED ON RESILIENCE

In my lifetime a curious habit has taken hold among a small minority of the earth’s residents. For this elite group the ability to get to nearly anywhere else on earth within 24 hours, give or take a few, has come to be regarded as normal, as an entitlement, as damn near a necessity.

In this new relationship with geography, there are only two places that matter: the place in which I get on an airplane, and the place where I get off. Intervening places don’t matter: they are not felt, they are not smelled, they are not heard, they are usually not even seen unless the sky is exceptionally clear and a remote landscape scrolls far beneath my window.

To be sure, this ability to ignore intervening distances has developed over a few centuries, but it is still a recent phenomenon. Through nearly all of human evolution, when we traveled we felt every hill and bump and wave along our journey. Even when some of us gained the status of travelling on horseback or perhaps even in a wheeled wagon, journeys were rough and not drastically faster than a human could go on foot. In going from A to B, then, we learned a lot about, and we felt some connection to, every place between A and B.

The construction of smoother roads made some difference, and the explosive development of railroads in the 19th century made a lot of difference. As speeds climbed far beyond any velocity in previous human experience, the journey also became smoother. It was still possible to have a relatively close look at the passing landscape, but it was on the other side of a window, and viewing it was optional. In the twentieth century societies where car culture took over, this strong separation of traveller from landscape became a fact of daily life.

It was air travel, though, that made a complete separation of person from landscape a possibility. At first it was a rare, novel, exciting sensation experienced by just a few. Even today most of the people in the world have never flown,1 and only a tiny minority fly regularly.2 But for the global elite – which includes a substantial part of the population of affluent countries – most travel kilometers are traversed in high-altitude, high-velocity cocoons that make all the earth, save two points, mere fly-over country.

In the next installment of this series we’ll consider the environmental impact of this strange new travel habit. In this installment I concentrate on the struggles some of us face when we ask, “Should I fly?”

We’ll start by asking: which of our journeys actually matter?

Why not? It doesn’t cost me much …

In today’s world a small elite takes multiple trips a year, turning vast energy resources into pollution, in journeys that don’t have a lot of value, even to themselves.

Is that an outrageous and unwarranted value judgement? Perhaps. But here’s how I arrive at that judgement.

Of all the long journeys made by air travellers today, how many would be made if the person had to walk, or get on a slow and risky sailing craft to cross a large body of water? How many would be made if people had to peddle a bicycle most or all of the way? How many would be made if the best option was a train topping out at 100 km and stopping frequently? How many would be made if the traveller had to drive, on a road network that took them through every city, town and village?

We can answer those questions simply by looking into our own histories. Most people made few long journeys when it took days, weeks or months for a one-way trip to their destination.

Certainly, some journeys are exceptionally important to the traveller. Someone might find it so meaningful to say goodbye to an aging parent in a distant country that they would give up months of their time to make the trip. For a few people, it is valuable to go to distant countries for purposes of trade, in spite of the cost in time and risk. For people in desperate socio-economic straits, a trip halfway around the world at great personal hardship and risk and with no guarantee of ever making a return trip, might be judged the best of their terrible options.

A small number of people would even make a few distant journeys just to “see the world” – though in the past such trips were necessarily long in time as well as in space.

But crossing an ocean just to take a short river cruise? Crossing an ocean just to visit a few museums and restaurants for a week or two? Crossing a continent just for a weekend sporting event, or to lie on a beach for several days? Most such journeys simply wouldn’t be made if they involved a week or a month of travel getting there and the same getting home. They simply aren’t that important.

Those of us in the upper half of the global privilege pyramid can make frequent long journeys because they don’t cost us much personally. Since the onset of mass air travel, our long journeys cost us almost none of our own time. There is a cost, perhaps even a significant cost, in our discretionary income, yes – but if we have discretionary income to begin with, we’re lucky enough to have money we can spend on things we don’t need.

Now, we might be aware that our long airline journeys do have costs to other people around the globe, already today and even more in the near future. We might be aware of the carbon emissions from an aircraft, and aware that the other emissions approximately double the global-warming impact of the CO2 emitted.3 We might be aware that although aviation has contributed only a small proportion of global warming pollution to date, that’s because only a small percentage of the world’s population do much or any flying. We might even be aware that if we make more than one long-haul flight per year, those flights are likely the largest contributor to our personal carbon footprint.

That awareness might make us question whether we should stop flying, completely and forever. And perhaps that thought makes us so uncomfortable that we push it away, at least long enough to get our next trip booked.

But “all or nothing” framings seldom lead to the best decision-making. Here’s my suggestion for deciding which trips are really important. Would I still choose to take a journey even if the travel time, forth and back, were weeks or months? Is it important enough that I would even seriously entertain the idea of giving up a large chunk of my own time? If the answer is “no, obviously not!” then I shouldn’t consider foisting the cost on others either – costs, that is, in the form of large amounts of carbon pollution.

Honestly grappling with those questions may not result in a complete cessation of long-distance travel, but it would result in a drastic reduction in casual continent-hopping.

What about “love miles”?

In a perceptive blog post entitled “How to Fly Less”, climate scientist Kimberly Nichols relates how the difficult barrier of “love miles” stalled her from making progress on much easier and more consequential ways of reducing the impact of her flying habit.

“Love miles” is a phrase used by George Monbiot in his 2006 book Heat. “Love miles” refers to those long distance trips, obviously of deep importance to most people, made to visit family members or dear friends across continents or across oceans.

For Kimberly Nichols, a US resident who moved to Sweden for a university position, the thought of giving up her once-a-year visits to her parents in California was too much to bear. Worse, that blocked her from thinking about all the flights she could do without. But when she was prompted to start with the easy issues, not the hard issues, she soon found she could eliminate most of her flying, while deeply appreciating overland trips much closer to her current home.

Her advice is so simple that it shouldn’t even need emphasis:

“Identify which flights you don’t need; cut those first. A recent study of frequent flyers found the travellers themselves rated only 58 percent of their trips “‘important” or “very important.’”4

In the category of “good advice which I myself didn’t follow”, she admonishes “Don’t move really far away from people you love!” Perhaps that sounds trite. But until the last few generations, people needed a very compelling reason to move a great distance away from family, and if they did, they had no expectation of having routine or annual visits with the family members they had left – travel time commitments were too large.

As for long-distance vacations – is the grass always greener on the other side of the world? What about all the great destinations much closer to home that you have only glimpsed from the window of a plane, if at all?

It is often said that travel opens people’s minds, that it broadens their perspectives. Ideally, yes. But I’m not convinced that the age of mass airline tourism has made people generally wiser, let alone happier or more content. What it has done, is given a small subset of the globe’s affluent classes a barely skin-deep acquaintance with dozens or scores of places and their inhabitants. And that, at great but unequally distributed cost to our shared environment.

Stratospheric heights, and a steep price

For now and for the near future, most of the life-altering and life-threatening costs of the climate crisis are being paid by those who have contributed the least to carbon emissions. The people who pay the biggest price don’t live in the tiny proportion of the globe represented by ski resorts, beach resorts, or the capitals of “civilization” such as London, Paris, Los Angeles, New York or Shanghai. Those who pay the highest price live in the rest of the globe, fly-over country for the frequent flyers.

The Global Inequality Report gives a particularly stark example of carbon emissions inequality: space tourism.

“An 11-minute flight [into space] emits no fewer than 75 tonnes of carbon per passenger once indirect emissions are taken into account (and more likely, in the 250-1,000 tonnes range). At the other end of the distribution, about one billion individuals emit less than one tonne per person per year. Over their lifetime, this group of one billion individuals does not emit more than 75 tonnes of carbon per person. It therefore takes a few minutes in space travel to emit at least as much carbon as an individual from the bottom billion will emit in her entire lifetime.5

But how stark is the carbon emissions inequality for the more “average” frequent flier? We’ll take a more detailed look at inequality in the skies in the next installment of this series.


In the interest of honest disclosure, here is a brief summary of my own relationship to flying. I have never been a frequent flyer, and I’ve only taken two trips across an ocean. For most of my adult life I took most of my vacations by bike, but that often involved a plane trip for at least one leg of the journey. After becoming aware of the climate crisis and the role of aviation in that crisis, I consciously decided to minimize flying. In the past 10 years I have taken one one-way flight from Minneapolis to Toronto, and one one-way flight from London to Toronto. I have also become painfully aware of the terribly limited opportunities for train travel in North America as compared to train travel in Europe. Nevertheless, there are more great places in North America that can be reached by train than I will ever have time to visit.


Footnotes

“Less than 20 percent of the world’s population has ever taken a single flight” – former Boeing CEO David Muilenburg, cited in “The global scale, distribution and growth of aviation”,  by Stefan Gössling and Andreas Humpe, Global Environmental Change, November 2020.

“National surveys indicate that in high income countries, between 53% and 65% of the population will not fly in a given year.” – Gössling and Humpe, Global Environmental Change, November 2020.

To cite one source, a Yale Environment 360 article says this: “Though lasting for only a short time, these ‘contrails’ [condensation trails] have a daily impact on atmospheric temperatures that is greater than that from the accumulated carbon emissions from all aircraft since the Wright Brothers first took to the skies more than a century ago.” And further: “Civilian aircraft currently emit about 2 percent of anthropogenic CO2 and, once the effects of contrails are included, cause 5 percent of warming. But there is a key difference. While CO2 accumulates in the atmosphere and has a long-lasting effect, contrails last a matter of hours at most, and their warming impact is temporary.” (How Airplane Contrails Are Helping Make the Planet Warmer, by Fred Pierce, July 18, 2019.) If we rapidly shrink the aviation industry, the effects of contrails will quickly dwindle too. But if the airline industry continues to grow, contrails will help push the climate towards already close tipping points.

Data cited from “Can we fly less? Evaluating the ‘necessity’ of air travel”, Journal of Air Transport Management, October 2019.

5 World Inequality Report 2022, Coordinated by Lucas Chancel (Lead author), Thomas Piketty, Emmanuel Saez, Gabriel Zucman, page 134; emphasis mine.


Image at top of page: Airplane landing at Zurich airport, June 2018, photo by Michael Kuhn, accessed at Wikimedia Commons; cropped and resized.

Right-sizing delivery vehicles

Cargo bikes can replace far heavier vehicles for a substantial share of urban deliveries. But should you buy a cargo bike for personal use? Probably not.

ALSO PUBLISHED ON RESILIENCE.ORG

In North America we think in extreme terms when it comes to last-mile freight delivery. Whether the cargo is a couple of bags of groceries, a small parcel, a large-screen TV or a small load of lumber, we routinely dispatch vehicles with hundreds-of-horsepower engines.

This practice has never made sense, and there have always been niche markets where some products and parcels have been delivered by bicycle couriers instead of truck drivers. Historically, cargo bikes were in wide use in many cities in the decades before cars and trucks cemented their death grip on most urban traffic lanes.1

Today the cargo bike industry is growing rapidly due to several factors. Many cities are establishing zero-emissions zones. The cost of gasoline and diesel fuel has risen rapidly. Congested traffic means powerful expensive vehicles typically travel at bicycle-speed or slower in downtown areas. Last but not least, the development of low-cost, lightweight electric motors for small vehicles dramatically boosts the freight delivery capacity of e-assist bikes even in hilly cities.

Thousands of companies, from sole-proprietor outfits to multinational corporations, are now integrating cargo bikes into their operations. At the same time there is an explosion of new micro-powered vehicle designs on the market.2

Where a diesel-powered urban delivery van will have an engine with hundreds of horsepower, an electric-assist bike in the EU is limited to a motor of 250 W, or about one-third of one horsepower.3 Yet that small electric motor is enough to help a cyclist make typical parcel deliveries in many urban areas at a faster rate than the diesel van can manage.

A great many other deliveries are made, not by companies, but simply by individuals bringing their own purchases home from stores. In this category, too, North Americans tend to believe an SUV or pick-up truck is the obvious tool for the job. But in many car-clogged cities and suburbs a bicycle, whether electric-assist or not, is a much more appropriate tool for carrying purchases home from the store.

Image from pxhere.com, licensed via CC0 Public Domain.

This is an example of a change that can be made at the device level, rapidly, without waiting for system-level changes that will take a good bit longer. When it comes to reducing carbon emissions and reducing overall energy use, the rapid introduction and promotion of cargo bikes as delivery vehicles is an obvious place to make quick progress.

At the same time, the adoption of more appropriate delivery devices will become much more widespread if we simultaneously work on system-level changes. These changes can include establishing more and larger urban zero-emission zones; lowering speed limits for heavy vehicles (cars and trucks) on city streets; and rapid establishment of safe travel lanes for bikes throughout urban areas.

The environmental impact of deliveries

The exponential growth in online shopping over the past twenty years has also led to “the constant rise in the use of light commercial vehicles, despite every effort by cities and regulators to reduce congestion and transport emissions.”4

Last-mile urban delivery, notes the New York Times, “is the most expensive, least efficient and most impactful part of the supply chain.”5

Typical urban parcel delivery trucks have an outsize impact:

“Claudia Adriazola-Steil, acting director of the Urban Mobility Program at the World Resources Institute’s Ross Center for Sustainable Cities, said freight represented 15 percent of the vehicles on the roads in urban areas, but occupied 40 percent of the space. ‘They also emit 50 percent of greenhouse gas emissions and account for 25 percent of fatalities ….’”6

Since vehicle speeds in downtown areas are typically slow, most parcels are not very heavy, and the ability to travel in lanes narrower than a typical truck is a great advantage, a substantial portion of this last-mile delivery can be done by cargo bikes.

Both Fed-Ex and UPS are now building out electric-assist cargo bike fleets in many Western European cities. UPS has also announced plans to test electric-assist cycles in Manhattan.7

How much of the last-mile delivery business can be filled by cargo bikes? A report by the Rapid Transition Alliance says that “In London, it’s estimated that up to 14% of small van journeys in the most congested parts of the city could be made with cargo bikes.”8 City Changer Cargo Bike estimates that in Europe “up to 50% of urban delivery and service trips could be replaced by cargo bikes….”9

It’s important to note that big corporations aren’t the only, or even the major, players in this movement. Small businesses of every sort – ice-cream vendors, bakeries, self-employed carpenters and plumbers, corner grocery stores – are also turning to cargo bikes. The City Changer Cargo Bike report says that “It is important to highlight that the jobs created by cargo bikes are mainly created by Small and Medium-size Enterprises.”10

For small companies or large, the low cost of cargo bikes compared to delivery vans is a compelling factor. The New York Times cites estimates that “financial benefits to businesses range from 70-90% cost savings compared to reliance on delivery vans.”11

The cost savings come not only from the low initial purchase price and low operating costs of cargo bikes, but also from the fact that “electric cargo bikes delivered goods 60 percent faster than vans did in urban centers, and that an electric cargo bike dropped off 10 parcels an hour compared with a van’s six.”12

It’s no wonder the cargo bike industry is experiencing rapid growth. Kevin Mayne of Cycling Industries Europe says sales are growing at 60% per year across the European Union and could reach 2 million cargo bike sales per year by 2030.

Delivery vans in European cities are typically powered by diesel. Replacing a few hundred thousand diesel delivery vans with e-cargo bikes will obviously have a significant positive impact on both urban air quality and carbon emissions.

But what if diesel delivery vans are switched instead to similar-sized electric delivery vans? Does that make the urban delivery business environmentally benign?

Far from it. Electric delivery vans are just as heavy as their diesel counterparts. That means they cause just as much wear and tear on city streets, they pose just as much collision danger to cyclists, pedestrians, and people in smaller vehicles, and they produce just as much toxic tire and brake dust.

Finally, there is the significant impact of mining and manufacturing all that vehicle weight, in terms of upfront carbon emissions and many other environmental ills. There are environmental costs in manufacturing cargo bikes too, of course. But whereas a delivery van represents a large amount of weight for a much smaller delivery payload, a cargo bike is a small amount of weight for a relatively large payload.

In a listing by Merchants Fleet of the “5 Best Electric Cargo Vans for Professionals”, all the vehicles have an empty-weight a good bit higher than the maximum weight of cargo they can carry. (The ratios of empty vehicle weight to maximum cargo weight range from about 1.5 to 3.5.)13

By contrast, a recent list of recommended electric-assist cargo bikes shows that the ratios are flipped: all of these vehicles can carry a lot more cargo than the vehicles themselves weigh, with most in the 4 – 5 times cargo-weight-to-empty-vehicle-weight range.14

One other factor is particularly worthy of note. The lithium which is a key ingredient of current electric-vehicle batteries is difficult, perhaps impossible, to mine and refine in an environmentally benign way. Lithium batteries will be in extremely high demand if we are to “electrify everything” while also ramping up storage of renewably, intermittently generated electricity. Given these constraints, shouldn’t we take care to use lithium batteries in the most efficient ways?

Let’s look at two contrasting examples. An Urban Arrow Cargo bike has a load capacity of 249 kg (550 lbs), and a battery weight of 2.6 kg (5.7 lbs)15 – a payload-to-battery-weight ratio of about 44.

The Arrival H3L3 electric van has a load capacity of 1484 kg (3272 lbs) and its battery is rated at 111 kWh.16 If we assume, generously, that the Arrival’s battery weighs roughly the same as Tesla’s 100 kWh battery, then the battery weight is 625 kg (1377 lbs).17 The Arrival then has a payload-to-battery-weight ratio of about 2.4.

In this set of examples, the e-cargo bike has a payload-to-battery-weight ratio almost 20 times as high as the ratio for the e-cargo van.

Clearly, this ratio is just one of many factors to consider. The typical e-cargo van can carry far heavier loads, at much higher speeds, and with a longer range between charges, than e-cargo bike can manage. But for millions of urban last-mile deliveries, these theoretical advantages of e-cargo vans are of little or no practical value. In congested urban areas where travel speeds are low, daily routes are short, and for deliveries in the 1 – 200 kg weight range, the e-cargo bike can be a perfectly adequate device with a small fraction of the financial and environmental costs of e-cargo vans.

On Dundas Street, Toronto, 2018.

Cargo bikes, or just bikes that carry cargo?

A rapid rollout of cargo bikes in relatively dense urban areas is an obvious step towards sustainability. But should you buy a cargo bike for personal use?

Probably not, in my opinion – though there will be many exceptions. Here is why I think cargo bikes are overkill for an average person.

Most importantly, the bikes most of us have been familiar with for decades are already a very good device for carrying small amounts of cargo, particularly with simple add-ons such as a rack and/or front baskets.

A speed fetish was long promoted by many bike retailers, according to which a “real bike” was as light as possible and was ridden by a MAMIL – Middle-Aged Male In Lycra – who carried nothing heavier than a credit car. Cargo bikes can represent a chance for retailers to swing the pendulum to the opposite extreme, promoting the new category as a necessity for anyone who might want to carry more than a loaf of bread.

In spite of bike-industry biases, countless people have always used their bikes – any bikes – in routine shopping tasks. And with the addition of a sturdy cargo rack and a set of saddlebags, aka panniers, a standard-form bike can easily carry 25 kg or more of groceries. Or hardware, or gardening supplies, or a laptop computer and set of office clothes, or a stack of university textbooks.

The bikes now designed and marketed as cargo bikes can typically carry several times as much weight, to be sure. But how often do you need that capability, and is it worth the considerable downside that comes with cargo bikes?

Cargo bikes are typically a good bit longer and a lot heavier than standard-model bikes. That makes them more complicated to store. You probably won’t be able to carry a big cargo bike up stairs to an apartment, and you might not sleep well if you have to leave an expensive cargo bike locked on the street.

If you only occasionally need to carry larger amounts of cargo, you’re likely to get tired of riding a needlessly heavy and bulky bike the rest of the time.

If you occasionally carry your bike on a bus, train, or on a rack behind a car, a long cargo bike may be difficult or impossible to transport the same way.

Depending on the form factor, you may find a cargo bike doesn’t handle well in spite of its large weight capacity. Long-tail cargo bikes, with an extra-long rack over the rear wheel, can carry a lot of weight when that weight is distributed evenly on both sides of the rack. But if the load is a single heavy object, you may find it difficult to strap the load on the top of the rear rack so that it doesn’t topple bike and rider to one side or the other. (As one who has tried to load a big reclining chair onto a rear rack and ride down the road, I can attest that it’s harder than it sounds.)

Long-tail cargo bike. Photo by Richard Masoner on flickr.com, licensed via Creative Commons 2.0.

 

Box-style cargo bike in Lublin, Poland. Photo by Porozumienie Rowerowe, “Community cargo rental”, via Wikimedia Commons.

The large box style cargo bikes known as bakfiets solve those balance problems, but are typically heavy, long, and thus difficult to store. They can be ideal for moving around a city with children, though many parents will not feel comfortable doing so unless there is a great network of safe streets and protected bike lanes.

For people who have a secure storage space such as a garage, and the budget to own more than one bike, and for whom it will often be helpful to be able to carry loads of 100 kg or more by bike – a cargo bike might be a great buy. Or, perhaps a cargo trailer will be more practical, since it can add great cargo-carrying ability to an ordinary bike on an as-needed basis.18

Ideally, though, every urban area will soon have a good range of cargo-bike businesses, and some of those businesses will rent or loan cargo bikes to the rest of us who just occasionally need that extra capacity.

• • •

In the next installment of this series on transportation, we’ll look at a sector in which no significant device-level fixes are on the horizon.


References

See A Visual History of the Cargo Bike, from Mechanic Cycling, Haverford, Pennsylvania.

For an overview of a wide range of new cargo bikes and urban delivery initiatives, see the annual magazine of the International Cargo Bike Festival.

In North America wattage restrictions vary but many jurisdictions allow e-assist bikes with motors up to 750 Watt output.

Stakeholder’s Guide: Expanding the reach of cargo bikes in Europe, published by CycleLogistics and City Changer Cargo Bike, 2022.

“A Bicycle Built for Transporting Cargo Takes Off,” by Tanya Mohn, New York Times, June 29, 2022.

Tanya Mohn, New York Times, June 29, 2022.

Tanya Mohn, New York Times, June 29, 2022.

Large-tired and tested: how Europe’s cargo bike roll-out is delivering, 18 August 2021.

Stakeholder’s Guide: Expanding the reach of cargo bikes in Europe, 2022.

10 Stakeholder’s Guide: Expanding the reach of cargo bikes in Europe, 2022.

11 Tanya Mohn, New York Times, June 29, 2022.

12 Tanya Mohn, New York Times, June 29, 2022.

13 5 Best Electric Cargo Vans for Professionals”, Merchants Fleet.

14 10 Best Electric Cargo Bikes for Families and Businesses in 2022,” BikeExchange, Sept 1, 2022.

15 10 Best Electric Cargo Bikes for Families and Businesses in 2022,” BikeExchange, Sept 1, 2022.

16 5 Best Electric Cargo Vans for Professionals”, Merchants Fleet.

17 How much do Tesla’s batteries weigh?”, The Motor Digest, Nov 27, 2021.

18 One example is the Bikes At Work lineup. I have used their 96” long trailer for about 15 years to haul lumber, slabs of granite, voluminous bags of compost and many other loads that would have been awkward or impossible to move with most cargo bikes.


Photo at top of page: “Eco-friendly delivery with DHL in London: a quadracycle in action,” by Deutsche Post DHL on flickr.com, Creative Commons 2.0 license.