The mobility maze

Also published at

Mobility is good, so more mobility is better, right? If only it were so simple.

Mobility, after all, is generally less important to people than accessibility. When we go somewhere it’s not the movement that’s valuable, it’s the access to something – a school, shopping, a workplace, a friend’s house or a park – that really counts. That holds true whether we’re walking across the street, taking a subway to work, or navigating suburban traffic in an SUV enroute to the big-box store.

A prioritization of mobility in transportation planning, unfortunately, often has the result of reducing accessibility.1 Particularly in North America, a century-long focus on mobility has resulted in drastic changes to urban and suburban landscapes. As we travel into a new century facing the challenges of climate change and reduced energy affordability, the inherited legacy of mobility-fixation presents major challenges to average citizens and land-use planners alike.

If we look back just over a century, both the bicycle and then the car initially increased both mobility and accessibility for many people. True, it was a thrill to travel at speeds that had previously seemed inhuman. But fast wheeled transportation also opened up many new opportunities for late nineteenth and early twentieth century people. The local school, local stores, local employers were no longer the only options – suddenly many people could easily access opportunities on the other side of the city or the other side of the county.

The increase in accessibility was especially significant to rural Americans whose social worlds had been tightly circumscribed by the distance they could walk or ride a slow horse. There was very good reason that “Of the first million Model Ts that Ford sold, 64% went to the farm and small town market.”2

Yet as quickly as cars increased accessibility for rural people, cars decreased accessibility for a great many city-dwellers, especially those not privileged enough to drive a car. The first change was that on many streets, it was no longer safe to access the other side of the road by foot, as people had done for millennia. If the threat of being run down was not enough, PR campaigns and then laws created the new crime of jaywalking. In busy areas, pedestrians had to walk down the block to a traffic light, wait for their turn to cross, and then double back to the destination. Thus in millions of situations in cities every hour, cars increased accessibility for their drivers while reducing accessibility for people on foot.

A single-minded focus on mobility, however, would introduce far more sweeping changes over time. Once large numbers of people moved through cities by car, big parking lots were needed between stores. Whether on foot or behind the wheel, people now needed to move farther to get where they wanted to go. New zoning regulations separated workplaces from shopping, education and residential districts, requiring people to travel farther.

This mobility focus reached its fullest expression with the mid-twentieth century expressway, AKA “controlled access highway”. All across North America, vast swaths of land were devoted to traffic lanes reserved for high-speed vehicles, with entrances and exits only at widely spaced intervals. Particularly when these expressways slashed through existing cities, they instantly disrupted accessibility in previously thriving neighbourhoods, making a host of urban amenities more difficult to reach for those traveling on foot or by bicycle.

As a general rule we might say that more mobility results in more accessibility, if all other relevant factors remain the same. But when we increase mobility, many other factors do tend to change, either immediately or over the long term, and often the end result is less accessibility.

Can you get there from here?

When looking at maps of North American suburbs and exurbs, an old joke comes to mind. An elderly villager, when asked for directions from his hamlet to a town across the county, answers, “Well, if I wanted to get to [Coventry] [Mariposa] [insert favourite town name], I sure as heck wouldn’t be starting from here”.

But for better or worse, we have to start from right where we are. So in considering the challenges in correcting a decades-long focus on mobility at the expense of accessibility, I’ll conclude this post with a few examples taken from my region.

In the grandly named “Greater Toronto Area”, a heavy reliance on expressways has made the later introduction of commuter rail services both more difficult and less effective. The extraordinary allocation both of land and public finances to expressways encouraged people to commute by car, from far outside the city to jobs in Toronto or its suburbs. But when, inevitably, rush hours lengthened and gridlock became common, belated extensions of mass transit services had to fit into the spaces between expressways, parking lots and major arterial roads. As a result, these transit facilities are neither particularly accessible nor attractive to people who don’t drive.

The Google satellite map below, for example, shows a shopping mall called Scarborough Town Centre, which is attached to a station for a light rail line to downtown.

This “City Centre” concentrates a wide variety of functions including retail stores, restaurants, theatres, office buildings and government services. But because so many people in this area will arrive by car, these functions must be widely spaced to allow many hectares of access roads and parking. Thus the City Centre is not accessible by foot except for determined hikers. Furthermore, the 14-lane expressway Highway 401 is adjacent to the complex, creating a wide separation between this centre and any residential or commercial districts to the immediate north.

As illustrated here, a residence just north of the expressway is only about 800 meters from the train station. But getting past the auto-induced obstacles involves a bike ride of almost 3 km. And it’s not a pretty ride. As shown in the Google Streetview image below, crossing the bridge over the 401 means a noisy, windy, polluted journey over more than a dozen lanes of car and truck traffic.

The need to accommodate car traffic is an even greater handicap for commuter rail stations further outside the city. To the east of Toronto, the GO Transit commuter rail line currently ends on the outskirts of Oshawa, about an hour’s train ride from downtown Toronto. Although several buses bring commuters here from surrounding suburban areas, huge numbers of people arrive by car, and the seemingly endless parking lots are never adequate. The presence of these parking lots, on the other hand, is a barrier to creation of any major, concentrated residential or commercial district within walking distance of this station.

Even for commuters from nearby residential areas in the upper left and right of this image, getting to the station without a car would include navigating the spaghetti-string intersection of Highway 401. (Also shown in image at the top of this post.) Cyclists and pedestrians are seldom seen crossing that bridge in droves.

Recently-built residential neighbourhoods in this area show the same strong emphasis on mobility over accessibility. Here are two examples from the sprawling subdivisions that stretch far to the north of Highway 401.

A small strip mall provides a few services, including a restaurant. As shown here, if you could walk directly to the restaurant from an address just one short block away, you’d only have to travel 120 metres – but as indicated by Google Maps, the actual walking distance is 1 kilometre.

Within these neighbourhoods the intentional lack of a simple grid street plan, replaced instead by irregular blocks, loops and cul-de-sacs, supposedly makes areas like these unattractive to through traffic and therefore quieter. An unavoidable side effect, however, is a major reduction in the number of neighbours or services accessible within a couple of hundred metres. In example below, two neighbours who would be only 135 metres apart in a grid system are instead faced with a 1.2 km one-way trip. In other words, mobility-focused design gives such neighbourhoods poor accessibility for anyone but drivers.

No easy fix

Achieving a transportation mix suited to the coming century will require a focus on accessibility more than mobility. This is a tall order in areas where an expensive, land-use-dominating infrastructure is currently devoted to car culture. It would be comforting to think that this built infrastructure took several decades to construct, and we can now spend several decades fixing the inherited problems. However, the urgency of reducing carbon emissions means we do not have several decades to respond to our current challenges.

Fortunately, there have been citizens’ movements, city governments, urban planners and scholars in many countries who have already provided many valuable lessons. A new book, Beyond Mobility,3 summarizes many inspiring illustrations, and I’ll turn to that book in the next installment in this series.

Top photo: Google Satellite View of intersection of Highway 401 with Stevenson Rd, Bloor St, and Champlain Ave in Oshawa, Ontario, Canada.


1For this framing of mobility vs. accessibility, I am indebted first of all to John C. Falcocchio and Herbert S. Levinson, and their 2015 book Road Traffic Congestion: A Concise Guide.

2Tom McCarthy, Auto Mania, pg 37.

3Robert Cervero, Erick Guerra, and Stefan Al, Beyond Mobility: Planning Cities for People and Places, Island Press, December 2017.

Speeding down a dead end road

Also published at

Since the birth of car culture more than a century ago, lavish consumption of energy has not been a bug but a feature. That’s now a feature we can ill afford, as we attempt the difficult and urgent task of transition to renewable energies.

Notwithstanding all the superlatives lavished on Elon Musk by mass media, one of his great achievements has gone unsung: his ingeniously simple contribution to the Search for ExtraTerrestrial Intelligence (SETI).

I refer, of course, to his donation of a used automobile to the possible inhabitants of outer space. If there is intelligent life out there, they will recognize Musk’s Tesla Roadster as a typically energy-guzzling death trap of the genus known as “car”, and they’ll promptly return it to sender, COD.

Wait a minute, Musk’s Roadster is not a typical car, some might protest – it’s electric! True enough, but the Roadster, like its newer sibling the Model 3, was designed to seamlessly fit into and extend our current car culture. And one of the key features of car culture is that it was structured, from the beginning, to consume energy with careless abandon.

That giddy attitude to energy was understandable in the early days of the age of oil, but it will make our current transition to a clean-energy economy far more difficult if not impossible.

The invention of car culture

Americans did not invent the car, but they quickly came to dominate both car production and car consumption – and more than any other country, they put car culture at the centre of a way of life.

In his excellent book Consuming Power, David E. Nye notes that

“[By 1929] there was roughly one car for every five Americans, and an astonishing 78 percent of the cars in the world were in the United States. In France or Great Britain there was only one car for every 30 people, and in Germany only one for every 102. The automobile had become the central American consumer good and the engine of the American economy, stimulating a wide range of subsidiary industries and suppliers.”[1]

The pattern continued after World War II. “Americans drove 75 percent of the world’s automobiles in 1950,” Nye says. “Moreover, they wanted big automobiles.”[2]

The taste for big, fast cars was cultivated long before most Americans could hope to buy a car. Tom McCarthy’s Auto Mania shows how a small coterie of wealthy young men, hyped by the new mass media, captured public imagination with their expensive quest for speed – starting in 1900. That was the year when an heir to the Vanderbilt shipping fortune set tongues wagging with his powerful new toy.

“In June 1900, Vanderbilt bought a Daimler Phoenix, his first Daimler and his first racing car for which he had to pay the impressive price of 10,000 dollars. This car – nicknamed “White Ghost” and powered by a 23 hp engine which accelerated the car to a top speed of just under 100 km/h – was at last completely to Vanderbilt’s liking.”[3]

At least, the Daimler car was completely to Vanderbilt’s liking for two years. By 1902, he needed a more powerful car – a 60 hp Mors Z – to set a new speed record of 122 km.[4]

Other wealthy Americans got into the racing game too, and it was essential not just to go fast, but to go fast uphill. In each city with an expensive auto dealership, McCarthy notes, the steepest hill was the standard place for a test drive. “By 1904, when vehicles such as Vanderbilt’s 90-hp Mercedes proved too powerful for the annual hill climb at Eagle Rock, New Jersey, the hill climbs had made their point.”[5]

There was no practical use for this speed at the time – there were very few stretches of road smooth enough or straight enough to be driven at 50 km/hr, let alone 120 km/hr. But in America, unlike in Western Europe, the love of overpowered cars quickly became not just an elite hobby but a mass movement – with effects that remain strong today.

To suburbia and beyond

As one component of car culture, Americans developed a new way of living that was simultaneously industrialized and decentralized – with residences, office complexes and factories all moving out of central cities to the edges of urban areas.

As Nye explains, “This post-urban society was based on a historically anomalous situation: multiple sources of energy were all in oversupply.”[6]

Timothy Mitchell also takes up this theme. In the US in the first half of the twentieth century, he writes, oil gushed out of the ground so readily that it was hard for major oil companies to keep control of the market, and over-supply often threatened their profits. Regulation of domestic competitors was one prong in their strategy, while purposeful restrictions on the flow of abundant Middle East oil, prior to the 1950s, was another prong.

Another “method of preventing energy abundance,” Mitchell writes “involved the rapid construction of lifestyles in the United States organised around the consumption of extraordinary quantities of energy.”[7]

This American project began in the early 1900s and eventually became self-driving.

Overcoming performance anxiety

At the beginning of the 20th century, “The speeding millionaire sportsmen so effectively demonstrated and publicized the speed and power of the automobile that its introduction had an ‘in-your-face’ quality,” McCarthy writes. “Their behavior aroused strong emotions in other Americans, provoking a bitter reaction while also stoking the desire of millions to own an automobile, too.”[8]

Thus was set in motion a habit exhibited by Americans ever since: buying cars that can reach top speeds well in excess of the limitations of most driving conditions and most laws.

That would have been of little consequence, unless someone started building cars that could be sold to working-class Americans, and paying workers enough that they could afford cars. That was the role of Henry Ford. His Model T hit a sweet spot of size, speed, and affordability:

“Ford made the Model T inexpensive enough, well-made enough, and, most important, just large, powerful and fast enough that buyers could close most of the status gap between themselves and the wealthy without hypocritically aping them or leaving themselves open to ridicule for choosing a cheap, slow, poorly made car.”[9]

With its 26 horsepower engine and a top speed of 55–65 kilometers/hour, the Model T was more  than fast enough for the typically rough, rutted roads of rural America in 1910 (and 64% of the first million Model Ts went to farm and small town markets).[10]

The market for cars, of course, would have been very limited without the right legal and physical infrastructure, and government readily offered an essential helping hand. As Nye notes,

“Automobiles are not isolated objects; they are only the most salient parts of a complex energy-consuming system that includes production lines, roads, parking lots, oil wells, pipelines, service stations, and the redesign of urban spaces to accommodate drivers.”[11]

He further explains,

“As much as half of a city’s land area was dedicated to roads, driveways, parking lots, service stations, and so on. … This reshaping of the environment was not caused by the automobile itself. Americans were extremely active in defining their landscapes by means of zoning boards, park commissions, and city councils.”[12]

By mid-century, the US was systematically decommissioning public transit infrastructure – intra- and inter-city trains, streetcars and buses – in favor of the private car. This change happens to have been in the financial interests of both the car companies and the oil companies, the most powerful corporate interests in the country.

In energy consumption terms, the consequence was simple: “The largest growth in energy use began in the late 1930s and lasted until the early 1970s. In these 35 years energy consumption grew by 350 percent.”[13]

The comparison to comparably-industrialized western Europe is illuminating. By the early 1970s, “Compared with equally affluent Europeans, Americans used roughly twice as much energy per capita. Half of the difference was directly attributable to their transportation system ….”[14] In the first 70 years of the 20th century, western Europe had no significant domestic sources of oil, and thus no powerful corporate interests to make a case that it was in the “national interest” to consume as much energy as possible.

Car culture in the US, however, had acquired seemingly unstoppable momentum. In the early 1970s the US reached its peak of conventional oil production, and the country had already become dependent on steady supplies of imported oil. Yet the blip of the 1970s “energy crisis” made little difference to a high-energy way of life.

“Between 1969 (just before the crisis) and 1983 (just after), the number of miles driven by the average American household rose 29 percent. There were 39 percent more shopping trips, and the distances traveled on these trips increased by 20 percent.”[15]

Fighting for space

At the heart of car culture is a contradiction. The essential allure of speed can be reliably achieved only on sparsely travelled roads. But the increasing profits of oil companies and auto manufacturers alike depend on selling more cars to more people – and most people live and/or work in densely populated areas.

As noted by Nye, when half of a city’s land area was devoted to roads and parking lots, that pushed residents further apart and further from urban centres. By design, the new suburbs had insufficient density to support good public transit – which further locked suburbanites into car dependency. Traffic congestion, once a phenomenon of urban centres, became a regular rush-hour phenomenon on essential arteries 30, then 40, then 50 km or more from urban cores.

The stressed-out commuters on these routes might indeed be able to drive part way to work at high speed. But in spite of (because of?) the fact that they drive increasingly powerful vehicles, they also, on average, spend more and more time commuting.[16] So what good is that speed and power?

The promise of cars was that speed would conquer space. But the reality of car culture is that space triumphs over speed.

A specific example illustrates how this dynamic has played out across North America. Consider the collection of bridges and ramps now under construction at this site:

(Photos taken Friday March 16, 2018)

What vast complex of engineering wizardry is this? Actually, it’s an intersection. An  intersection of two rural highways, about 70 km from downtown Toronto, Ontario, Canada.[17] And nothing so complex as a four-way intersection, just a three-way T-junction.

Why is it deemed necessary to invest so much in one T-junction out here? Well, as North America’s busiest road,[18] Highway 401 regularly stalls to stop-and-go traffic anywhere along a 100-km stretch. And as the ripples of auto-dependent sprawl spread ever wider, there is a perceived need to build even more traffic-facilitating infrastructure. (Meanwhile, as in jurisdictions across North America, it’s almost impossible to find money to fix the crumbling auto infrastructure built decades or generations ago.)

In Ontario, the quest for congestion relief has taken the form of a new privately-operated toll road, taking a wide swing around the northern edges of the Toronto megalopolis. On Highway 401 a single careless driver can at any time cause a traffic-snarling accident that delays thousands of other drivers, often for hours. But on the new toll expressway, tolls are set so high that traffic nearly always moves at standard “highway speeds”.

And that’s a good thing, since at these far edges of exurbia, there are a high proportion of “extreme commuters”.[19] A lot of drivers at the new Highway 401/418 t-junction will be commuting a long distance, so it’s very important to them that they can drive these entry and exit ramps at full highway speed. (Too bad for those who can’t afford the tolls – they’ll have to stay on the low-class public highway. And even the toll-payers will at some point have to exit onto slow-moving, congested arterials.)

The method to Musk’s madness

When Elon Musk decided to sell electric cars to Americans, he followed a century-old playbook. First, put out an exclusive product endowed with marvelous powers of acceleration and speed. (Never mind that the buyers will be subject to the same speed limits and traffic congestion as everyone else – you can accelerate from 0 – 97 km in less than 4 seconds!) Then, having cleansed his electric-car brand of any taint of performance anxiety, he began marketing the later Model 3 at a price point that average American motorists could afford.

But an individual car is of no value. It only functions as part of an elaborate system of laws, roads, parking lots, and energy production and distribution – car culture, in other words. And car culture has proven to be a colossal waste of space, time and energy.

So if there are indeed intelligent aliens, they won’t be taken in by Musk’s unsolicited offer of a used car.

If there is extraterrestrial intelligence, that stray Roadster will be marked “Return to Sender.”


Top photo: composite by An Outside Chance from StarMan in Space video.


[1] David E. Nye, Consuming Power, MIT Press, 1997, page 178

[2] Nye, Consuming Power, page 205

[3] quoted from “Willie K.’s Cars #1: The 1900 23-HP Daimler “White Ghost

[4] Greg Wapling, “Land Speed Racing History

[5] Tom McCarthy, Auto Mania, Yale University Press, 2007, page 2

[6] Nye, Consuming Power, page 196

[7] Timothy Mitchell, Carbon Democracy, Verso, 2013, page 41

[8] McCarthy, Auto Mania, page 7

[9] McCarthy, Auto Mania, page 39

[10] McCarthy, Auto Mania, page 37

[11] Nye, Consuming Power, page 177

[12] Nye, Consuming Power, page 180

[13] Nye, Consuming Power, page 187

[14] Nye, Consuming Power, page 223

[15] Nye, Consuming Power, page 221

[16] Washington Post, February 22, 2017, “The American commute is worse today than it’s ever been

[17] While both Consuming Power and Auto Mania restrict their focuses to the United States, car culture in Canada closely mirrors that in the US. Not only does the manufacturing chain function as if there is no border, but the pattern of car-dependent suburban development is pretty much the same in Canada as in the US as well.

[18] From many sources, including Business Insider, Aug 29, 2012

[19] See chart “Extreme commutes are the fastest growing” in Washington Post, Feb 22, 2017


St Marys Underground Expansion: A whole lotta truckin goin on

Can the current Waverly Road/Highway 401 interchange handle a doubling of truck traffic to and from the St Marys Cement quarry?

Given that the Waterfront Trail shares the road in this section with the St Marys traffic plus the Highway 401 on/off traffic, can the Waterfront Trail be promoted as a safe and healthy recreational feature?

What mitigation measures will St Marys Cement propose to compensate for a large increase in heavy truck traffic which will affect commuters as well as recreational cyclists?

These are key questions raised by the Project Description for the Bowmanville Expansion Project.

A previous post (Special Delivery: Moving 4,000,000 Tonnes) provided rough estimates for the number of shiploads or truckloads of limestone aggregate the project would move each year.

The Project Description says that the aggregate will be moved “using existing road, rail and/or dock infrastructure”. But at the project’s Public Information Centre in Bowmanville on December 5, St Marys representative David Hanratty made clear that for the foreseeable future, the aggregate would go out by truck, not by ship or rail, primarily to customers on the east side of the Greater Toronto Area.

It is simply not cost-effective to load the aggregate onto ship, then load it again onto trucks enroute to construction projects, Hanratty said. Rail freight is now too expensive for a low-cost product like limestone aggregate, he added, in addition to the problem of needing to reload the material onto trucks for the “last mile” in any case.

So the 4,000,000 tonnes of limestone will all go out by truck. At 20 tonnes per truck, that would mean 200,000 truckloads per year, or 770 truckloads per day if the aggregate is hauled five days/week.

(Put another way, truck traffic in and out of St Marys is likely to more than double. While the current quarry extracts a similar amount of limestone as the underground expansion is projected to add, much of the current output is in the form of cement clinkers shipped out on the Capt. Henry Jackman. With a capacity of 30,000 tonnes, this ship can carry the equivalent of 1500 20-tonne truckloads each time it leaves port. But the aggregate shipments from the new underground mine will all go by truck.)

The timing of shipments to market will also affect traffic volume. If buyers are not prepared to stockpile aggregate through the winter, the hauling might be concentrated in the summer construction season – meaning the impact on the Waverly Road/Highway 401 interchange, and on the Waterfront Trail, could be especially heavy during summer.

The current Highway 401 on- and off-ramps in this location are far from ideal. On the south side, traffic coming off the eastbound 401 has to get past two stop signs before making it onto Waverly Road. The left turn onto Waverly Road will be more difficult when several hundred more trucks per day are heading north on Waverly.

Traffic getting off the eastbound 401 faces two stop signs before turning onto Waverly Road (red Xs), causing frequent back-ups along the off-ramp. Assuming most of the loads of aggregate from St Marys will go to the eastern GTA, the loaded trucks will travel north along Waverly Road (red arrow) to the 401 westbound ramp, making it more difficult for Bowmanville-bound traffic to turn onto Waverly Road from Energy Drive. The volume of traffic on the eastbound off-ramp will also be increased, due to empty aggregate trucks returning from GTA markets via the eastbound 401. (Image from Google Maps, December 13, 2016)

Perhaps this interchange can be re-engineered to handle the new traffic load. Is St Marys prepared to fund this reconstruction as part of its impact mitigation efforts?

As for the Waterfront Trail, the addition of several hundred more trucks per day to the section of shared Trail/roadway will make the Trail less attractive and less safe. Two changes might be made to mitigate this impact.

First, perhaps the Trail could be rerouted here to eliminate the sharing of congested roadway on Waverly Road and Energy Drive. Ironically, Google Maps currently shows an incorrect routing for the Waterfront Trail as shown below; could this route become reality in the future?

Although the Waterfront Trail is currently routed on Waverly Road and then along Energy Drive (as shown by the red arrows), Google Maps incorrectly shows a routing along the north edge of the St Marys property (the solid blue line). Could this route become reality in the future? (Image from, December 13, 2016) click for larger view

Second, there is no safe and attractive route between the Waterfront Trail and most of the populated areas of Bowmanville. Cyclists from the north side of the 401 have two choices, both poor, for routes across the 401 to the Waterfront Trail (see Getting across the 401). One of these routes is Waverly Road, which will be more dangerous for cyclists if there is a major increase in truck traffic without an appropriate “complete streets” redesign.

Perhaps St Marys can mitigate the expansion project’s negative impact on the Waterfront Trail by funding a separate walking/cycling overpass or underpass at the 401. Such a routing would be a significant improvement to Bowmanville’s recreational trails, which currently offer no safe connection to the Waterfront Trail.

Top photo: Bumper-to-bumper traffic on off-ramp to Waverly Road from eastbound 401, December 13, 2016

A container train on the Canadian National rail line.

Door to Door – A selective look at our “system of systems”

Also published at

Our transportation system is “magnificent, mysterious and maddening,” says the subtitle of Edward Humes’ new book. Open the cover and you’ll encounter more than a little “mayhem” too.

Is the North American economy a consumer economy or a transportation economy? The answer, of course, is “both”. Exponential growth in consumerism has gone hand in hand with exponential growth in transport, and Edward Humes’ new book provides an enlightening, entertaining, and often sobering look at several key aspects of our transportation systems.

door to door cover 275Much of what we consume in North America is produced at least in part on other continents. Even as manufacturing jobs have been outsourced, transportation has been an area of continuing job growth – to the point where truck driving is the single most common job in a majority of US states.

Manufacturing jobs come and go, but the logistics field just keeps growing—32 percent growth even during the Great Recession, while all other fields grew by a collective average of 1 percent. Some say logistics is the new manufacturing. (Door to Door, Harper Collins 2016, Kindle Edition, locus 750)

With a focus on the operations of the Ports of Los Angeles and Long Beach, Humes shows how the standardized shipping container – the “can” in shipping industry parlance – has enabled the transfer of running shoes, iPhones and toasters from low-wage manufacturing complexes in China to consumers around the world. Since 1980, Humes writes, the global container fleet’s capacity has gone from 11 millions tons to 169 million tons – a fifteen-fold increase.

While some links in the supply chain have been “rationalized” in ways that lower costs (and eliminate many jobs), other trends work in opposite directions. The growth of online shopping, for example, has resulted in mid-size delivery trucks driving into suburban cul-de-sacs to drop off single parcels.

The rise of online shopping is exacerbating the goods-movement overload, because shipping one product at a time to homes requires many more trips than delivering the same amount of goods en masse to stores. In yet another door-to-door paradox, the phenomenon of next-day and same-day delivery, while personally efficient and seductively convenient for consumers, is grossly inefficient for the transportation system at large. (Door to Door, locus 695)

Humes devotes almost no attention in this book to passenger rail, passenger airlines, or freight rail beyond the short-line rail that connects the port of Los Angeles to major trucking terminals. He does, however, provide a good snapshot of the trucking industry in general and UPS in particular.

Among the most difficult challenges faced by UPS administrators and drivers is the unpredictable snarl of traffic on roads and streets used by trucks and passenger cars alike. This traffic is not only maddening but terribly violent. “Motor killings”, to use the 1920s terminology, or “traffic accidents”, to use the contemporary euphemism, “are the leading cause of death for Americans between the ages of one and thirty-nine. They rank in the top five killers for Americans sixty-five and under ….” (locus 1514)

In the US there are 35,000 traffic fatalities a year, or one death every fifteen minutes. Humes notes that these deaths seldom feature on major newscasts – and in his own journalistic way he sets out to humanize the scale of the tragedy.

Delving into the records for one representative day during the writing of the book, Humes finds there were at least 62 fatal collisions in 27 states on Friday, February 13, 2015. He gives at least a brief description of dozens of these tragedies: who was driving, where, at what time, and who was killed or seriously injured.

Other than in collisions where alcohol is involved, Humes notes, there are seldom serious legal sanctions against drivers, even when they strike down and kill pedestrians who have the right of way. In this sense our legal system simply reflects the physical design of the motor vehicle-dominated transport system.

Drawing on the work of Strong Towns founder Charles Marohn, Humes explains that roads are typically designed for higher speeds than the posted speed limits. While theoretically this is supposed to provide a margin of safety for a driver who drifts out of line, in practice it encourages nearly all drivers to routinely exceed speed limits. The quite predictable result is that there are more collisions, and more serious injuries or death per collision, than there would be if speeding were not promoted-by-design.

In the design of cars, meanwhile, great attention has been devoted to saving drivers from the consequences of their own errors. Seat belts and air bags have saved the lives of many vehicle occupants. Yet during the same decades that such safety features have become standard, the auto industry has relentlessly promoted vehicles that are more dangerous simply because they are bigger and heavier.

A study by University of California economist Michelle J. White found that

for every crash death avoided inside an SUV or light truck, there were 4.3 additional collisions that took the lives of car occupants, pedestrians, bicyclists, or motorcyclists. The supposedly safer SUVs were, in fact, “extremely deadly,” White concluded. (Door to Door, locus 1878)

Another University of California study found that “for every additional 1,000 pounds in a vehicle’s weight, it raises the probability of a death in any other vehicle in a collision by 47 percent.” (locus 1887)

Is there a solution to the intertwined problems of gridlock, traffic deaths, respiratory-disease causing emissions and greenhouse gas emissions? Humes takes an enthusiastic leap of faith here to sing the praises of the driverless – or self-driving, if you prefer – car.

“The car that travels on its own can remedy each and every major problem facing the transportation system of systems,” Humes boldly forecasts. Deadly collisions, carbon dioxide and particulate emissions, parking lots that take so much urban real estate, the perceived need to keep adding lanes of roadway at tremendous expense, and soul-killing commutes on congested roads – Humes says these will all be in the rear-view mirror once our auto fleets have been replaced by autonomous electric vehicles.

We’ll need to wait a generation for definitive judgment on his predictions, but Humes’ description of our present transportation system is eminently readable and thought-provoking.

Top photo: container train on Canadian National line east of Toronto.

A book to read while you’re stalled in traffic

What’s the cause of traffic congestion? Many people have a quick answer.

Traffic congestion? Obviously, there are too many cars.

Traffic congestion? That just means there isn’t enough road space.

Traffic congestion? It’s all those cyclists and streetcars getting in the way

With 45 years experience as a driver, 35 years as an everyday cyclist and seven years working in road construction, I’d like to think I’ve learned something about coping with – not to mention causing – congestion. But I’ve never had a day of formal education in traffic engineering or town planning.

Road Traffic Congestion, published by Springer in April 2015, 401 pages, $99 ebook, $129 hardcover

Road Traffic Congestion, published by Springer in April 2015, 401 pages, $99 ebook, $129 hardcover

So I opened Road Traffic Congestion: A Concise Guide with the hopes that it would offer methodical, realistic ways to look at both the causes of traffic congestion and its relief.

With its 400 pages of conciseness, this manual discusses the relationship between transportation technologies, the causes, characteristics and consequences of congestion, and the pros and cons of a wide range of relief strategies.

So is the problem too many cars, or not enough road? The experts open the book with a diplomatic dodge of this loaded question: “Congestion in transportation facilities – walkways, stairways, roads, busways, railways, etc. – happens when demand for their use exceeds their capacity.” (The mention of walkways and stairways notwithstanding, there is little attention given to foot-powered transportation, and with some notable exceptions in the closing chapters, the traffic discussed is car and truck traffic.)

Still in the opening chapters, Falcocchio and Levinson hint at another direction for investigation: “When growth in economic activities significantly outpaces the growth in transportation infrastructure investments, cities experience congestion to levels that make mobility difficult.” Would they make an evidence-backed argument, I wondered, that all the post-World War II investments in freeways, suburban arterials and parking lots have been disproportionately small?

But the book provides no real economic analysis, either of the comparative economics of different modes of transportation, nor the relationship of transportation infrastructure to the economy as a whole.

What the authors do provide is a systematic cataloguing of the ways in which traffic gets backed up on our roads, with examples from across the continent. To an outsider, their discussion illustrates both the strengths and the limitations of current traffic engineering practice.

Whether discussing backups associated with closely spaced traffic lights on a main arterial, or backups around a non-standard intersection with five spokes, the focus remains on finding ways to reduce the delay for cars and trucks. This is not to suggest that the authors are unaware of safety issues for cyclists and pedestrians; they are careful to note possible hazards for non-motorists and the need to minimize pedestrian/automobile conflict points.

But in most of the data they marshall from cities across North America, the factors which are measured and worked into formulas are data about vehicles: cars per lane per mile, total vehicle throughput, vehicle minutes of delay, average vehicle speed etc.

Just as significantly, the methods and formulas are applied to traffic moving on a single given street, as opposed to the sum of the traffic moving along a street and the traffic crossing it. For example, there are formulas for calculating how the addition of a signal light will impact traffic throughput on an arterial road – but how will this impact the travelers trying to cross that street? Clearly these are complex relationships, but if we focus only the rate of traffic flow on a given street, how can we know whether our traffic-enhancement strategies on that street are helpful or harmful to the circulation in the whole neighborhood or district?

It’s clear that lots of professional effort has gone into measuring and defining levels of congestion. So I was surprised to see the subjectivity at the heart of so much of the discussion. At what level of crowding does congestion begin? A National Cooperative Highway Research Program Report pegs congestion to “the travel time or delay in excess of that incurred under light or free-flow travel conditions.” Likewise, a 2011 Urban Mobility Report from the Texas Transportation Institute concludes that Chicago and Washington, DC drivers spend 70 hours extra hours each year in congested traffic, using as their baseline the time these same trips would take in “free-flow” conditions.

Falcocchio and Levinson, however, write that

in a large city it is not realistic to travel at free flow speed (or at the posted speed limit) in the peak hour. It is not logical, therefore to compare actual peak hour travel times to free-flow peak hour travel times when free-flow in the peak hour is a practical impossibility in a large city. (emphasis theirs)

While this strikes me intuitively as correct, I hoped they would offer a compelling argument to back up their position. That argument is missing from the book. A clue emerges, however, in their discussion of the flow and lack of flow on inner-city freeways.

By design, a freeway is one of the least complex traffic systems. Many variables that are present on city streets are absent on freeways; there are no traffic lights, no parking spaces, no direct access from driveways, traffic is divided into one-way streams, and only vehicles moving at roughly the same speed are allowed. It’s true that (for the time being) all drivers are human, and thus their reaction times vary and chaos can happen. But there are neat graphs for the typical relationships between density of traffic (in vehicles per lane per mile), vehicle speeds, and traffic throughput (in vehicles per lane per hour).

Traffic throughput on a freeway drops rapidly after density increases and speeds drop below the “critical speed” of 53 mph. This typically happens when density has increased to about 45 cars per lane per mile, with just under 100 feet between cars. Road Traffic Congestion, page 153.

Traffic throughput on a freeway drops rapidly after density increases and speeds drop below the “critical speed” of 53 mph. This typically happens when density has increased to about 45 cars per lane per mile, with just under 100 feet between cars. Road Traffic Congestion, page 153.

These graphs show that up to a point, vehicle speeds slow modestly as traffic gets more dense, while total throughput still increases. When speeds drop below that point – the “critical speed” – the total throughput drops as well. On a typical freeway with design speed of 70 mph, this critical speed is 53 mph, and traffic tends to drop below this speed when density reaches 45 cars per lane per mile.

As the authors note, at this density there is an average of 97 ft between vehicles in each lane. So in pure spatial terms, the freeway is still closer to empty than to full. Yet it has already reached peak efficiency and any additional traffic will cause a drop in throughput – a drop that gets steeper with each increment of additional density.

In other words, a freeway needs to remain mostly empty to stay anywhere close to free-flow, if by free-flow we mean moving at close to its design speed. Not only must most of the space in each lane be unoccupied, but there are extra lanes required for emergency access; interchanges require lots of additional space; and because the freeway provides no direct access to the main city grid or to driveways, even more space is needed for service roads.

This, perhaps, is why it is practically impossible to achieve free-flow traffic at peak hour in a large American city: there simply isn’t the space to allow each and every commuter to drive simultaneously on almost-empty roadways.
And so we return to the question posed at the beginning: is congestion caused by too many cars, or not enough road? Cars will only move freely, Falcocchio and Levinson make clear, if there are fewer of them:

where added capacity is provided, its lasting effect on congestion relief (especially in metropolitan areas exceeding 2 million people) can only be realized by combining it with strategies that reduce the need to travel by car …

And so the last third of the book outlines strategies for reducing vehicle traffic volume: road tolls, market-priced parking, high-occupancy vehicle lanes, flex-time work schedules, provision of park-and-ride facilities, public transit service improvements, and suburban land-use planning geared to maintaining a grid rather than devolving into winding crescents and cul-de-sacs. The brief discussions of walking and cycling are insightful, even though they arise here in the context of improving motor vehicle flow.

Historical spread of congestion out from Central Business Districts. Road Traffic Congestion, page 20.

Historical spread of congestion out from Central Business Districts. Road Traffic Congestion, page 20.

For someone living at the far edge of greater Toronto, Road Traffic Congestion reads as a warning sign. The book illustrates how traffic congestion has spread inexorably beyond center cities to the inner suburbs, suburbs and exurbs. In the strip malls, big-box shopping centers, and curly-maze residential monocultures that are marching out from the city, we see tomorrow’s congestion in the making.

As Falcocchio and Levinson explain, adding turn lanes or a new freeway, fixes that take a few months or a few years, often just push the congestion farther down the road, while land-use policies that favour non-car travel can take a generation to be fully effective:

Although … “smart growth” land use/transportation strategies are effective (in the near term) at the neighborhood scale, significant reductions in regional VMT [vehicle mile traffic] impacts resulting from a change in land use patterns, however, takes a long time …