Can big science be sustained?

Reflections on Fundamentals by Frank Wilczek

Also published on Resilience

During a long career at the frontiers of physics Frank Wilczek has earned many honours, including a Nobel Prize for Physics in 2004. Fortunately for general readers he is also a gifted writer with a facility for explaining complex topics in (relatively) simple terms.

Perhaps you have, as I do, an amateur fascination with topics such as quantum electrodynamics (QED) and quantum chromodynamics (QCD), and questions such as “To what extent do the laws of physics work the same running forward in time or running backward in time?” If so I heartily recommend Wilczek’s latest book Fundamentals: Ten Keys to Reality. (Penguin Random House, January 2021)

Wilczek shares with us the sense of wonder and beauty that has kept him excited about his work for the past 50 years. You might realize, as I did, that with Wilczek’s help you will understand aspects of particle physics, cosmology, and the nature of time better than you ever thought you might.

Yet from the opening pages of the book, Wilczek drops in assertions about history, society and the role of science that I found both troubling and worthy of a more focused examination.

What makes western science so great? (Or not.)

In Fundamentals Wilczek spends most of his time discussing scientific developments during the 20th century, particularly developments that weren’t even mentioned in high-school textbooks the last time I took a course in physics. But he grounds his discussion in a celebration of the Scientific Revolution of the 17th century.

“The seventeenth century saw dramatic theoretical and technological progress on many fronts, including in the design of mechanical machines and ships, of optical instruments (including, notably, microscopes and telescopes), of clocks, and of calendars. As a direct result, people could wield more power, see more things, and regulate their affairs more reliably. But what makes the so-called Scientific Revolution unique, and fully deserving of the name, is something less tangible. It was a change in outlook: a new ambition, a new confidence.” (Fundamentals, page 4)

In subsequent centuries, the applied science that grew from this scientific revolution led to internal combustion engines, electric motors, all manner of telecommunications, digital cameras, lasers, magnetic resonance imaging and the Global Positioning System – to name just a few of the technologies that have transformed ways of life.

I count myself a fan of the scientific method, and I haven’t personally known anyone who is either ready, willing or able to live without any access to any of the technologies Wilczek cites as outgrowths of this method. But can these technological successes be credited solely to a new and superior approach to inquiry?

In the opening pages Wilczek states that “prior to the emergence of the scientific method, the development of technologies was haphazard.” (page 3) He then slips in an observation that to him requires no elaboration, presenting a graph of GDP growth with this comment:

“This figure, which shows the development of human productivity with time, speaks for itself, and it speaks volumes.” 

Graph from Fundamentals, by Frank Wilczek, page 3.

The graph speaks for itself? And just what does it say? Perhaps this: when at long last humans learned to extract ancient deposits of fossil energy, laid down over millions of years, and learned how to burn this energy inheritance in a frenzy of consumption, with no worries about whether successive generations would have any comparable energy sources to draw on, only then did “economic growth” skyrocket. And further: it’s not important that a great deal of wealth – from accessible fossil energy reserves to biodiversity to climate stability – has gone down as fast as that graph of GDP has gone up. It doesn’t matter, since in GDP’s accounting for economic growth there is no need to distinguish productivity from consumptivity.

As you might guess, what I glean from that GDP graph may not match what Wilczek hears, when he hears the graph “speak for itself.” But I think the relationship of science to the larger human enterprise, including the economy, deserves further scrutiny here.

That GDP is a crude economic indicator should become clear if we reflect on the left side of Wilczek’s graph as much as the right side. He credits the scientific revolution with leading to an explosion in productivity – but his graph shows a barely perceptible change in world GDP per capita for the period 1500 – 1800. Significant growth in GDP per capita, then, didn’t arise for at least a century after the scientific revolution, until about the time fossil fuel exploitation began in earnest.

Can this be taken as evidence that there were no fundamental changes in the world economy during the centuries immediately preceding the fossil fuel economy? To the contrary, some of human history’s most epic changes began about 1500, as western european nations colonized the Americas, instituted the slave trade on a massive scale, colonized large parts of Africa and Asia, and began a centuries-long transfer of ecological wealth from both land and sea around the globe, at the cost of hundreds of millions of human lives. Global economic wealth per capita may not have changed much during those centuries – but the distribution of that wealth, and the resulting wealth of a small slice of educated european elites, certainly did change. And it was from these elites that, with few exceptions, came the men (again, with few exceptions) who worked out the many discoveries in the scientific revolution.

It shouldn’t surprise us that these new understandings would come from people who had the economic security to get good educations, acquire expensive books, set up laboratories, make patient observations for years or decades, and test their theories even if any practical applications might be so far in the future as to be unforeseeable. A well-rounded assessment of the scientific revolution, then, should look not only at the eventual technological outcomes that might be credited to this revolution, but also the ecological and sociological factors that preceded this revolution. And a balanced assessment of the scientific revolution should also ask about blind spots likely to accompany this worldview, given its birth among the elite beneficiaries of a colonialism that far more of the world’s population were experiencing as an apocalypse.

In particular, it should be no surprise that among the class of people who do the lion’s share of consumption, the dominant faith in economics has conveniently assured them that their consumptivity equals productivity.

How much energy is enough energy?

Wilczek spends much of Fundamentals illuminating energy in many guises: the energy charge of an electron, the energy that holds quarks together to form protons, the gravitational energy of a black hole as it bends space-time, the dark energy that appears to be causing the universe not just to expand, but to expand at an accelerating pace. His explanations are marvels of clarity in which he imparts the sense of wonder that he himself felt at the outset of his lifelong scientific journey.

When he turns to the role that energy plays in human life and society, unfortunately, his observations strike me as trite. He titles one chapter, for example, “There’s Plenty of Matter and Energy”.

Here he gives us the unit AHUMEN, short for Annual Human Energy, which he calculates at 2,000 calories/day, which over a year comes to about 3 billion joules. With this unit in hand, he notes that world energy consumption in 2020 was about 190 billion AHUMENs, or about 25 AHUMENs per capita. He draws this conclusion:

“This number, 25, is the ratio of total energy consumed to the amount of energy used in natural metabolism. It is an objective measure of how far humans have progressed, economically ….” (p 127, emphasis mine)

If tomorrow we consume twice as much energy as we consume today, then by this “objective measure” we will have progressed twice as far economically. This sounds to me like neither clever physics nor clever economics, but mere mis-applied arithmetic.

Wilczek adds that Americans consume roughly 95 AHUMENs per person, without pointing out what should also be obvious: if the global average is 25 AHUMENs per capita, and Americans consume 95 per capita, that means hundreds of millions of people in our advanced global economy are getting only a few AHUMENs each.

Proceeding with his argument that “there’s plenty of energy”, Wilczek says that if we consider only “the portion of solar energy that makes it to Earth, then we find ‘only’ about 10,000 times our present total energy consumption. That number provides a more realistic baseline from which to assess the economic potential of solar energy.” (page 127)

Indeed, there is and always has been a vast amount of solar energy impacting the earth. That energy has always been enough to fry a human caught unprotected for too long in the desert sun. It’s always been enough to electrocute a human, when solar energy is incorporated into lightning storms. That abundant solar energy can even freeze us to death, when increasingly unstable weather systems push arctic air deep into regions where humans are unprepared for cold.

That energy has always been enough to kill crops during heat waves or to flood coastal cities when storms surge. With each passing year, as our geoengineered atmosphere holds in more heat, there will be more solar energy theoretically available to us, but immediately active in global weather systems. That will make our economic challenges greater, not simpler.

For that abundant solar energy to represent “economic potential”, we need to have technologies that can make that solar energy useful to us, and manageable by us, in cost-effective ways. Wilczek both recognizes and dismisses this concern in a single sentence:

“Technology to capture a larger fraction of that [solar] energy is developing rapidly, and there is little doubt that in the foreseeable future – barring catastrophe – we will be able to use it to support a richer world economy sustainably.” (page 140)

Wilczek himself might have little doubt about this, but I wish he had included some basis on which we could be confident this is more than wishful thinking.

While this discussion may seem to have veered a long way from the core concerns of Wilczek’s book, I suggest that the relationship of societal energy consumption to the needs of the scientific enterprise may soon become a critical issue.

ATLAS detector being assembled at Large Hadron Collider, 2006. Photo by Fanny Schertzer, 27 February 2006. Accessed via Wikimedia Commons.

The energy demands of big science

The work of 20th century physics has come with a high energy price tag. Famously, some of the major steps forward in theory were accomplished by brilliant individuals scribbling in notebooks or on chalk boards, using tools that were familiar to Newton. But the testing of the theories has required increasingly elaborate experimental setups.

The launching of a space telescope, which helps reveal secrets of the farthest reaches of our universe, is one energy-intensive example. But likewise in the realm of infinitesimally small, sub-atomic particles – where Wilczek has focused much of his work – the experimental apparatus has become increasingly grand.

Wilczek tells us about Paul Dirac, a pioneer in quantum electrodynamics who wrote in 1929 that “The underlying physical laws necessary for the mathematical theory of a large part of physics and the whole of chemistry are thus completely known.” Yet much subsequent progress in the field had to wait:

“When Dirac continued, ‘And the difficulty lies only in the fact that application of these laws leads to equations that are too complex to be solved,’ modern supercomputers were not even a dream.” (page 120)

The theoretical framework for the Higgs particle was proposed decades before it could be confirmed, and that confirmation carried a huge energy cost. “In the years prior to 2012, Higgs particle searches came up empty,” Wilczek writes. “We know now, in retrospect, that they simply didn’t bring in enough energy. The Large Hadron Collider, or LHC, finally did.” (page 176)

It’s not just that this collider involved the construction of a circular tunnel 27 km in circumference, nor that while operating it draws 200 MW of electricity, comparable to one-third the electricity draw of the city of Geneva. The power allows experimenters to smash protons together at speeds only 11 km/h less than the speed of light. And these collisions, in turn, result in nearly incomprehensible quantities of data being captured in the Atlas detector, which sends “all this information, at the rate of 25 million gigabytes per year, to a worldwide grid that links thousands of supercomputers.” (page 176)

When the tunnel had been bored, the superconducting magnets built and installed, the Atlas detector (itself twice the size of the Parthenon) assembled, the whole machine put into operation, and the thousands of supercomputers had crunched the data for months – then, finally, the existence of the Higgs particle was proven.

Wilczek doesn’t go into detail about the energy sources for this infrastructure. But it shouldn’t escape our attention that the experimental-industrial complex remains primarily a fossil-fueled enterprise. Fossil fuels fly researchers from university to university and from lab to lab around the world. Fossil fuels power the cement plants and steel foundries, and the mines that extract the metals and minerals. Many individual machines are directly powered by electricity, but on a global scale most electricity is still generated from the heat of fossil fuel combustion.

Wilczek cites the vast amount of solar energy that strikes the earth each day as a vast economic resource. Yet we are nowhere close to being able to build and operate all our mines, smelters, silicon chip fabrication facilities, intercontinental aircraft, solar panel production facilities, electricity transmission towers, and all the other components of the modern scientific enterprise, solely on renewable solar energy.

And if someday in the not-too-distant future we are able to operate a comparably complex industrial infrastructure solely on renewable energy, will this generate enough economic surplus to support tens of thousands of scientists working at the frontiers of research?

The U.S. Department of Energy’s Oak Ridge National Laboratory unveiled Summit as the world’s most powerful and smartest scientific supercomputer on June 8, 2018. “With a peak performance of 200,000 trillion calculations per second—or 200 petaflops, Summit will be eight times more powerful than ORNL’s previous top-ranked system, Titan. … Summit will provide unprecedented computing power for research in energy, advanced materials and artificial intelligence (AI), among other domains, enabling scientific discoveries that were previously impractical or impossible.” Source: Oak Ridge National Laboratory. Accessed via Wikimedia Commons.

Just one clue

Wilczek cites a famous quotation from equally celebrated physicist Richard Feynman. During a lecture in 1961 Feynman offered this question and answer:

“‘If, in some cataclysm, all of scientific knowledge were to be destroyed, and only one sentence passed on to the next generations of creatures, what statement would contain the most information in the fewest words? I believe it is the atomic hypothesis (or the atomic fact, or whatever you wish to call it) that all things are made of atoms.’” (Feynman, quoted in Fundamentals, page 61)

And Wilczek proposes this revision:

“Instead of ‘all things are made of atoms,’ we should say that ‘all things are made of elementary particles.’” (page 62)

This may seem nothing more than an intellectual parlor game, with scientific knowledge today increasing at an accelerating pace. Wilczek doesn’t sound worried about the death of scientific knowledge, when he says that “Technology has already given us superpowers, and there is no end in sight.” (page 171)

But as we roar ahead into the climate crisis, I think it would be helpful and appropriate to revise Feynman’s question, replacing the “if” with “when”:

If When, in some cataclysm, all of scientific knowledge were to be is destroyed, and only one sentence passed on to the next generations of creatures, what statement would contain the most information in the fewest words?

We can’t know for sure, of course, whether the climate cataclysm will destroy scientific knowledge. But what we can see is that we are on a so-far unwavering path to climate catastrophe, and that most governments around the world aren’t pledging (let alone fulfilling pledges) to make carbon emissions reductions that are even close to sufficient. With each passing year the challenge of transforming our civilization into a sustainable civilization grows more urgent, time grows shorter, and the consequences of failure grow more threatening not only to individual lives but to the very survival of our species. These threats are being documented and communicated in great detail by our scientific enterprises. And yet the greatest beneficiaries of our supposedly productive global economy (individual examples notwithstanding) lead the charge to the cliff.

So perhaps it’s time to consider seriously “What one sentence of information might be most useful to our survivors?”

Suppose we project our thoughts, right now, into a climate-ravaged future. Earth’s surviving inhabitants contend with a violently unstable climate. They struggle to gather enough food from deeply impoverished ecosystems, they try to build sufficiently robust shelters, they yearn to raise healthy children, and they face these challenges without any useful energy boosts from polluting fossil fuels (fuels which in any case will be hard to extract, since we’ll have already burned up the easily accessible reserves). Our digital networks of knowledge may well have gone dark, and our libraries may have flooded or burned.

In this future, will it be helpful to tell our descendants “All things are made of elementary particles?” Perhaps it will be many generations further on, if all goes well, before they can again support a scientific elite, armed with elaborate experimental apparatus, capable of making sense of these “elementary particles”.

I can’t help but wonder if, in this future, the best advice we might offer would be a simple warning: “Don’t do what we did.”


Photo at top of page: Grappling the Hubble Space Telescope. An STS-125 crew member aboard Space Shuttle Atlantis snapped a still photo of the Hubble Space Telescope after it was grappled by the shuttle’s Canadian-built Remote Manipulator System. Credit: NASA. Accessed at Wikimedia Commons.

Will the sun soon set on concrete?

Also published on Resilience

At the mention of our “fossil economy” or “fossil civilization”, most of us probably think immediately of “fossil fuels”. But as Mary Soderstrom’s recent book points out, not only our energy supply but also our most important building material has origins in fossilized ancient life.

Concrete, by Mary Soderstrom, is published by University of Regina Press, October 2020. 272 pages.

In Concrete: From Ancient Origins to a Problematic Future, Soderstrom shows us why cement is the literal foundation of nearly every strand of the capitalist economy. She also explains that, just as the fossil fueled industrial complex is deeply dependent on concrete for its infrastructure, so too the concrete industry is deeply dependent on fossil fuels. And these dependencies can’t be unwound easily or quickly, if at all.

By weight, of course, concrete is primarily made from sand, gravel and water – but the all important ingredient which turns the slurry into “manufactured rock” is cement. And cement, Soderstrom writes, “is in large part made from rocks laid down hundreds of millions of years ago when the shells and carapaces of organisms settled in the bottom of seas.” (Concrete, page 3)

The particular rock is limestone, which is abundant, widely distributed, and relatively easy to quarry and crush. But to make a cement from limestone takes energy – a lot of energy.

Ancient Greeks and Romans invented one form of concrete, and some of the resulting buildings and aqueducts still stand today. Quicklime was the basis for their concrete, and production of this lime needed only the heat from firewood. Making lime, Soderstrom says “had a large impact on the forests of any region where people had figured out how to make the substance.” (Concrete, page 44)

For uses such as marine piers and aqueducts, early concrete also depended on particular types of sand that had been forged in the heat of volcanos. The best such sand came from Pozzuoli, near Vesuvius, and such sands are still known as pozzolans. That kind of sand is not so abundant nor so widely distributed, and the global dominance of concrete as a building material had to await more recent technological developments.

This limestone quarry and cement production plant on the north shore of Lake Ontario is operated by St. Marys Cement, a subsidiary of Brazilian corporation Votorantim Cimentos. February 2016.

A key step came in the nineteenth century through the work of French engineer Louis Vicat. In his efforts to recreate the intense heat of volcanos, he developed kilns that chemically transformed crushed limestone into a forerunner of today’s ubiquitous Portland cement. These industrial volcanos had their own serious implications:

“The temperatures required for doing this are nearly twice as high as that needed to make quicklime, about 1,450 degrees C, and therein lie two of the great problems created by our enormous use of modern concrete: where to get the energy to attain those temperatures, and what to do with the greenhouse gases emitted in the process.” (Concrete, page 25-26)

The primary fuel for cement production remains coal, supplemented in some areas with pet coke (a dusty carbon residual from petroleum refining), ground up tires, plastic, even some wood byproducts. To date, renewable energy sources are not up to the challenge of producing good cement at quantity. That is because, Soderstrom writes “the end product of hydro, solar, nuclear, tidal, and wind power is electricity .… [S]o far it doesn’t produce temperatures high enough to make cement from the basic rock.” (Concrete, page 47)

Another key development arose because concrete, as hard as it may be, does not have great tensile strength and therefore doesn’t, by itself, span gaps very well. The skyscrapers and bridges essential to our cities and transportation systems need the addition of steel to concrete. Ridged steel rods, woven into forms before the concrete is poured, are commonplace today, but Soderstrom writes that it took much trial and error to produce a steel that would adhere to concrete in the right way. That steel was also very expensive until development of the Bessemer furnace in the 1850s. Only then could concrete take its place at the foundation of the industrial economy.

Vancouver Public Library central branch, British Columbia, October 2016.

Flashy constructions of glass, steel and concrete throughout our cities are one face of concrete’s dominance. But Soderstrom reminds us that concrete is equally important in humble abodes around the world. Do-it-yourself builders in edge cities rely on a bag of cement, a few buckets of gravel, and an old barrel in which to mix up a slurry – and the result may be a new wall or a solid floor in an improvised one-room dwelling. The government of Mexico, she notes, helped combat the spread of parasites by paying for $150 of supplies, allowing small home owners to replace their dirt floors with concrete.

“The desire to provide sanitary housing for ordinary working families has been the motor for concrete construction since the middle of the nineteenth century,” Soderstrom writes. (Concrete, page 69) There are echoes of this trend everywhere. In American suburbs, even where the walls and roofs are made of lumber, the homes nearly all stand on concrete foundations. Concrete was critical in rapidly reconstructing urban housing in Europe following World War II. And such construction continues on a gargantuan scale in contemporary China: “the United States used 4.5 gigatons of cement between 1901 and 2000, while China, as it ramped up its housing and infrastructure offensive, consumed 6.6 gigatons in only four years.” (Concrete, page 102)

Roads, bridges, houses, apartments, offices, factories – if concrete was important only in those categories of infrastructure, it would be a big enough challenge to replace. Yet Soderstrom illustrates how concrete is closely implicated in the food we eat and the water we drink. The formerly desert valleys of California, which now supply such a huge proportion of fruits and vegetables for North America, only became an oasis – perhaps a temporary one – due to massive concrete dams and hundreds of kilometres of concrete aqueducts and concrete irrigation ditches.

In other areas hundreds of millions of people live in areas that would frequently flood were it not for concrete flood control structures – and which might flood, catastrophically, if these structures are not maintained. Meanwhile hundreds of millions more depend for their drinking water on concrete canals that divert water away from its natural flow. This is true in the US southwest, for example, but on an even greater scale in China. “Already, Beijing is getting 70 percent of its water” from the South North Water Diversion,” Soderstrom writes – and this project is far from completion.

Truck route to Port of Valencia, Spain. October 2018.

An attempt to paint a full picture of concrete’s history and current importance is necessarily wide-ranging, and boundaries around the subject would necessarily be subjective. In the discussions of military strategy, social housing policy, and the politics of carbon taxes, there were many points in the book where I felt the focus on concrete was getting a bit too soft. Yet Soderstrom’s goal is much appreciated: she wants us to understand the vast scope of the challenge we face in transforming our concrete civilization into something sustainable.

It is now widely realized that the production of concrete is a major source of carbon emissions, and that we must reduce those emissions to net zero in the next few decades or face imminent collapse of the planetary life-support systems. Concrete: From Ancient Origins to a Problematic Future gives us glimpses of many efforts to reduce the environmental impact of concrete, through use of different fuel mixes, carbon sequestration, or technological enhancements that reduce the amount of Portland cement needed in a given project. None of these experiments sound reassuring, given the rapidity with which we must transform this critical industry, and given that it would be difficult if not impossible to simply forgo the use of concrete, within decades, without mass casualties.

Other books are better positioned to discuss the technical challenges involved in making sustainable concrete, or making sustainable infrastructure without concrete. But Soderstrom has performed a real public service in showing us the rich history of the seemingly dull material that undergirds our way of life.


Photo at top of page: Exponential Growth of Bridges – a Canadian Pacific rail line runs under ramps for the new Highway 418 expressway near Courtice, Ontario. January 2021. (Full-size image here.)

 

How we went from “makers” to “trash-makers” – and how to get back

Also published on Resilience


Why do we have so much stuff? Why is it so hard to find good stuff? And when our cheap stuff breaks, why is it so hard to fix it?

These questions are at the heart of our stories in 21st century industrialized nations, and these question are at the heart of Sandra Goldmark’s new book Fixation: How to Have Stuff Without Breaking the Planet.

As a theatre set designer Goldmark is attuned to the roles that things play in our personal stories. As a proprietor of a New York City “fix-it” shop, she understands why people want to keep and repair broken things, and why that is often unreasonably difficult. 

Fortunately for us she is also a darn good writer, whether she’s discussing the details of a damaged goose-neck lamp or giving an overview of a globe-spanning logistics system that takes materials on a one-way journey first to far-off factories, then to warehouses and stores, then to our homes, and finally, too soon, to our landfills. 

A copy of Fixation is one of the best gifts you could give or receive this season.

Linear Economy. Port trucks lining up for crane at Halifax loading dock.

Early in the book Goldmark asks why we are so attached to things, even when they have broken and it is more work to get them fixed than to buy new. This attachment, she says, is not pathological and indeed is at the very heart of being human. While many animals use simple tools, such as picking up a rock to crack nutshells, only humans make a point to save those tools. Living “in the moment” is great, but making preparations for the future is a key to our evolutionary success. Storing, maintaining, even loving our tools is thus a big part of human cultures.

The balance is seriously tilted, nevertheless, by an economic machine that depends on us buying more, all the time, and in particular buying new. Goldmark uses Ikea as a case study, describing their concerted effort to persuade customers that furniture is fashion, and we should buy new tables almost as often as we buy new clothes.

Then, too, there is carefully planned obsolescence, in products that we otherwise might keep for many years. Apple’s famously hard-to-replace batteries provide one example. Goldmark also describes an almost-durable desk lamp, which can be counted on to break because there is a plastic component where the lamp joins the gooseneck – that is, precisely where there is repeated motion and stress. Goldmark writes:

“Plastic is, very simply, a pain in the butt to fix. It’s hard to glue, and once compromised—cracked, scratched, nicked—it’s very hard to do anything useful with it at all. If you’ve got a plastic finish on something, you can, maybe, paint it or touch it up. But when plastic is used on component parts that take any stress, especially moving parts, it can mean that one small break makes the entire object useless.”

Placement. Loading “boxes” onto container ship, Halifax.

While plastic plays a big role in the factory-to-landfill pipeline, so too does cheap energy and international wage disparity:

“When  a  manufacturer  might  be  paid  three  dollars  per  hour  to  make  a  coffee machine in China or India, when raw materials and fuel for shipping are cheap, and a fixer in the States requires at least minimum wage, and hopefully more, it’s easy to see how making new cheap stuff became the dominant model.”

Thus in the United States in 2018, Goldmark writes, people spent about $4 trillion on new stuff but only $17.5 billion on used goods.

And while Americans like to celebrate their historical prowess as “makers”, not much is Made In America anymore. The makers, Goldmark writes, have been reduced to trash-makers. And unfortunately as the skills in making things atrophied, so too did the skills in repairing things.

Nudge. A tug guides a container ship to the wharf, Halifax harbour.

Getting beyond this unsustainable economy will require changes in attitudes, changes in education, changes in the manufacturing and retail chains, changes in wage allocations. Goldmark addresses all of these weighty subjects in beautifully accessible ways. With a nod to Michael Pollan, she rewrites his food mantra to apply to all the other things we bring home:

“Have  good  stuff  (not too much), mostly reclaimed. Care for it. Pass it on.”

Donating used goods helps, she writes, but “donating alone is not enough. If we’re not buying used ourselves, then we’re just outsourcing the responsibility of ‘closing the loop.’”

Caring for our things is both a simple and a complex undertaking. That means taking time to seek out quality items which will last and which can be repaired. It means promoting and honouring “embodied cognition” – simultaneous learning by head and hands, as practiced by people skilled in diagnosing and repairing. It means supporting companies that repair and resell their own products, and supporting local repair shops so they can pay a living wage.

As humans we will always want, need and have things, but our current way of life is unsustainable and we need to do much better. The good news, she says, is that

“We have the tools. We can build a better, circular model of care, of stewardship, of maintenance. A model where we value what we have.”


Photo at top of page: Freight yard at sunrise. Fairview Cove Container Terminal, Halifax, Nova Scotia. August 29, 2018. (click here for full-screen view)

 

The Hundred Years’ War for Safe Streets

Also published on Resilience.org

Should safety standards for new vehicles take into account the safety only of the inside passengers, or also the safety of others on the streets?

Right of Way, by Angie Schmitt, published by Island Press

When economic circumstances force large numbers of people who can’t afford cars to move into suburbs, should traffic policy on suburban streets still prioritize the unimpeded movement of the car owners? 

In urban areas where the population is predominantly from racialized communities, should mostly white, male engineering associations still set traffic rules?

These are some of the life-and-death questions explored in Angie Schmitt’s essential new book Right of Way: Race, Class, and the Silent Epidemic of Pedestrian Deaths in America (Island Press, August 2020). Although the focus is on the US, Schmitt also explains how and why other industrial countries have achieved far better safety records on urban streets.‡

Schmitt begins by outlining a sudden and rapid increase in traffic violence. Since 2009, Schmitt notes, there has been a 10% increase in total driving miles by Americans – but a 50% increase in pedestrian deaths. (Right of Way, page 7)

The reasons for the rise in fatalities are complex but there are obvious clues:

“There are patterns in who is killed: older people, men, and people of color are disproportionately at risk. We know what kinds of vehicles are most likely to kill: large trucks and SUVs.” (Right of Way, page 3)

Unravelling what she calls an epidemic, Schmitt visits cities around the country and explores issues of mobility justice, racial justice, economic justice and environmental justice. While most of the book deals with events of the past 30 years, she does look at key developments from a hundred years ago.

Victim-blaming and the invention of jaywalking

“In the United Kingdom,” Schmitt writes, “there is no equivalent violation to jaywalking, but the pedestrian safety record there puts the US data to shame.” (Right of Way, page 67)

Defining and prosecuting an offense called “jaywalking”, as it turns out, is not a way to protect the safety of pedestrians, but rather a way to turn street space into the privileged domain of dangerous vehicles and their drivers.

For nearly all of history, people simply crossed the road when they wanted to get to the other side. Now, however, they are expected to walk down the road, wait for permission from a traffic light, scurry across, and then walk back to their destination; they face the risk of summary execution by car if they simply cross the road when and where they’d prefer.

How did this come about? Schmitt draws on the work of historian Peter Norton (see Fighting Traffic: The Dawn of the Motor Age in the American City). During the 1920s – an era when car ownership was still relatively rare – about 200,000 Americans lost their lives to cars, and the victims were disproportionately children.

“In contrast to modern media accounts,” Schmitt writes, “the news at the time was unflinching about where to lay the blame: on drivers.” (Right of Way, page 69) Cities across the nation began to discuss serious restrictions or even bans on the passage of cars through city streets. The dominance of car culture was in doubt, and the response was a combination of political muscle by the largest industries, plus a concerted public relations campaign. The path to progress, the car companies and their spin doctors insisted, was not to restrict the movement of cars but to restrict the rights of walkers to safely cross the streets.

“One of motordom’s most critical victories was the introduction and eventual acceptance of the concept of jaywalking,” Schmitt writes. (Right of Way, page 70) She goes on to illustrate how, 100 years later, “the ideology of flow” continues to kill people, especially in economically disadvantaged and radicalized communities.

Take, for example, the important issue of installing signalized crosswalks that might give pedestrians a margin of safety at the cost of some inconvenience to drivers. The Manual on Uniform Traffic Control Devices, Schmitt writes, 

“instructs engineers that a crosswalk with a traffic signal is only “warranted” if ninety-three pedestrians per hour are crossing at the location in question. Failing that, the MUTCD states that a crosswalk with a traffic signal can be warranted if five pedestrians are struck by cars at the location in a single year.” (Right of Way, page 101)

A recent intensifying factor is the “suburbanization of poverty.” In the post-WWII era a road-building boom promoted “white flight” from US urban centers to suburbs where nearly everyone relied on cars. But in the last generation the trend has reversed. Many urban areas have gentrified and poorer residents – disproportionately black, latino and indigenous – have had to find cheaper housing in the suburbs. For example, Schmitt writes that in 1980 just 47 percent of Atlanta’s black population lived in the suburbs, but in 2010 the figure was 87 percent.

High-speed suburban arterial roads are especially deadly for people who must walk to work, walk to the grocery store, or walk to catch a bus. They are deadly for elderly people who have difficulty crossing several wide traffic lanes in the time allowed by signals programmed to minimize interruption to drivers. And these roads are especially deadly today, with a majority of new passenger vehicles that are far more dangerous to pedestrians than the cars of just 20 years ago.

Mean machines

Most environmentalists would agree that fossil fuel executives rank high on the corporate villainy scale, due to their role in sowing climate change confusion while their own scientists were secretly documenting the devastating effects of carbon emissions. But auto company executives deserve their own special place in hell. Not only did they respond to the climate crisis with a decades-long push to sell ever bigger, heavier, and therefore less fuel-efficient passenger vehicles, but they did so even as the evidence mounted that their products are far more dangerous to pedestrians.

Whereas an old-style sedan with a low front end would hit an average-height pedestrian in the legs, an SUV or recent model pick-up truck, with a much higher front end, will hit the same pedestrian in the abdomen, chest, head – or all three at once. It shouldn’t take an emergency room doctor to understand that being hit by a much taller vehicle is likely to cause much more serious internal injuries. Add to that the fact that whereas a pedestrian hit by a sedan will typically fall onto the hood of the sedan, a pedestrian hit by a much taller vehicle is likely to be literally run over, suffering more severe injuries or death even if the initial impact is survivable.

Ah, but think of the profit margin! Schmitt cites a Kelley Blue Book analysis: while even a small crossover SUV in 2017 sold for almost $9,000 more than an average midsized sedan, the production costs are almost the same. You can guess which kind of vehicle the auto industry is eager to sell.

In recent years the US auto industry has been the biggest buyer of advertising – more than $30 billion annually – and Schmitt reports that nine of the top ten advertised vehicles were SUVs or pick-ups.

The ad campaigns worked. While 83 percent of vehicles sold in the US in 2012 were sedans, Schmitt writes, by 2018 crossover SUVs had become the top-selling vehicle type.

As the sales of SUVs climbed, so did the pedestrian deaths. In the period 2010 to 2015, the odds of a pedestrian dying when hit by a vehicle jumped 29 percent.

Was this deadly trend just an unfortunate co-incidence? Not according to the National Highway Traffic Safety Administration (NHTSA); they estimated that “pedestrians struck by an SUV are two to three times more likely to be killed than those struck by a car.” (Right of Way, page 84)

The trend was also seen as causation, not mere correlation, by European lawmakers.

Schmitt writes that since 2004, the United Nations has recommended the imposition of “standards on automakers specifically to protect people outside the vehicles: pedestrians or cyclists.” In response, “the European Union imposed rules to protect pedestrians beginning in 2010.” (Right of Way, page 90)

These rules are already improving pedestrian safety in more advanced countries. In contrast to the high walls of steel at the front end of American SUVs and pickups, new European cars earning the best safety ratings have “active hood systems” which cushion the blow in a collision with a pedestrian. The result, Schmitt reports, is that pedestrians are 35 percent more likely to survive a collision.

Back to basics

Auto design, though, is just one aspect of traffic safety, and not necessarily the most important. Limiting speed is critical, since the force imparted in a collision increases non-linearly – doubling the speed quadruples the kinetic energy. Lowering vehicle speeds where pedestrians are present is thus an obvious response, if we are to believe that pedestrian lives matter.

Many cities are now lowering speed limits, especially in residential areas, and introducing other traffic calming measures. And while many tech boosters believe that autonomous vehicles will someday deliver us from traffic violence, there is already technology that can ensure that posted speed limits are effective:

“In 2019, the European Parliament ruled that by 2022, all new cars will come equipped with speed governors that physically limit the cars from exceeding the posted speed limit.” (Right of Way, page 137)

A transportation revolution must clearly be a big component of a Green New Deal. For anyone interested in exploring the many aspects of mobility justice, Right of Way is a must-read.


‡Schmitt writes that “On a population-adjusted basis, Canada, for example, loses less than half as many people on the roads every year as the United States” – which may be explained by the fact that the transit ridership share in Canada is about twice that of the US. But many issues in the book – the suburbanization of poverty, the recent predominance of high-front-end SUVs and pick-ups, the traffic policies reflected in high-speed suburban arterial roads – apply equally in Canada.

Illustration at top: The “Fearless Girl” statue stands her ground on a New York street against a Cadillac Escalade, one of the tallest of the current SUVs. This illustration was also inspired by a photo in Right of Way of a Tanzanian child who protested by sitting down in the middle of a busy street in Dar es Salaam, after a classmate was struck trying to cross that road.

Transition to a Low-Energy Future

One project has taken the lion’s share of my work time for the past year, and it has been a project close to my heart.

As long-time readers will have noted, my writings frequently concern the intersection between energy and economics. I was honored and grateful, therefore, to be asked to serve as guest editor of an issue of The American Journal of Economics and Sociology.

After a year’s work this issue is now published, under the title “Transition to a Low-Energy Future”. An issue overview and all individual articles can be found here.

I am now working on the next phase of this project – seeing this published as a generally-available print book. Inquiries and comments on this project are most welcome; please get in touch through the Contact page on this website.

Platforms for a Green New Deal

Two new books in review

Also published on Resilience.org

Does the Green New Deal assume a faith in “green growth”? Does the Green New Deal make promises that go far beyond what our societies can afford? Will the Green New Deal saddle ordinary taxpayers with huge tax bills? Can the Green New Deal provide quick solutions to both environmental overshoot and economic inequality?

These questions have been posed by people from across the spectrum – but of course proponents of a Green New Deal may not agree on all of the goals, let alone an implementation plan. So it’s good to see two concise manifestos – one British, one American – released by Verso in November.

The Case for the Green New Deal (by Ann Pettifor), and A Planet to Win: Why We Need a Green New Deal (by Kate Aronoff, Alyssa Battistoni, Daniel Aldana Cohen and Thea Riofrancos) each clock in at a little under 200 pages, and both books are written in accessible prose for a general audience.

Surprisingly, there is remarkably little overlap in coverage and it’s well worth reading both volumes.

The Case for a Green New Deal takes a much deeper dive into monetary policy. A Planet To Win devotes many pages to explaining how a socially just and environmentally wise society can provide a healthy, prosperous, even luxurious lifestyle for all citizens, once we understand that luxury does not consist of ever-more-conspicuous consumption.

The two books wind to their destinations along different paths but they share some very important principles.

Covers of The Case For The Green New Deal and A Planet To Win

First, both books make clear that a Green New Deal must not shirk a head-on confrontation with the power of corporate finance. Both books hark back to Franklin Delano Roosevelt’s famous opposition to big banking interests, and both books fault Barack Obama for letting financial kingpins escape the 2008 crash with enhanced power and wealth while ordinary citizens suffered the consequences.

Instead of seeing the crash as an opportunity to set a dramatically different course for public finance, Obama presented himself as the protector of Wall Street:

“As [Obama] told financial CEOs in early 2009, “My administration is the only thing between you and the pitchforks.” Frankly, he should have put unemployed people to work in a solar-powered pitchfork factory.” (A Planet To Win, page 13)

A second point common to both books is the view that the biggest and most immediate emissions cuts must come from elite classes who account for a disproportionate share of emissions. Unfortunately, neither book makes it clear whether they are talking about the carbon-emitting elite in wealthy countries, or the carbon-emitting elite on a global scale. (If it’s the latter, that likely includes the authors, most of their readership, this writer and most readers of this review.)

Finally, both books take a clear position against the concept of continuous, exponential economic growth. Though they argue that the global economy must cease to grow, and sooner rather than later, their prescriptions also appear to imply that there will be one more dramatic burst of economic growth during the transition to an equitable, sustainable steady-state economy.

Left unasked and unanswered in these books is whether the climate system can stand even one more short burst of global economic growth.

Public or private finance

The British entry into this conversation takes a deeper dive into the economic policies of US President Franklin Roosevelt. British economist Ann Pettifor was at the centre of one of the first policy statements that used the “Green New Deal” moniker, just before the financial crash of 2007–08. She argues that we should have learned the same lessons from that crash that Roosevelt had to learn from the Depression of the 1930s.

Alluding to Roosevelt’s inaugural address, she summarizes her thesis this way:

“We can afford what we can do. This is the theme of the book in your hands. There are limits to what we can do – notably ecological limits, but thanks to the public good that is the monetary system, we can, within human and ecological limits, afford what we can do.” (The Case for the Green New Deal, page xi)

That comes across as a radical idea in this day of austerity budgetting. But Pettifor says the limits that count are the limits of what we can organize, what we can invent, and, critically, what the ecological system can sustain – not what private banking interests say we can afford.

In Pettifor’s view it is not optional, it is essential for nations around the world to re-win public control of their financial systems from the private institutions that now enrich themselves at public expense. And she takes us through the back-and-forth struggle for public control of banking, examining the ground-breaking theory of John Maynard Keynes after World War I, the dramatically changed monetary policy of the Roosevelt administration that was a precondition for the full employment policy of the original New Deal, and the gradual recapture of global banking systems by private interests since the early 1960s.

On the one hand, a rapid reassertion of public banking authority (which must include, Pettifor says, tackling the hegemony of the United States dollar as the world’s reserve currency) may seem a tall order given the urgent environmental challenges. On the other hand, the global financial order is highly unstable anyway, and Pettifor says we need to be ready next time around:

“sooner rather than later the world is going to be faced by a shuddering shock to the system. … It could be the flooding or partial destruction of a great city …. It could be widespread warfare…. Or it could be (in my view, most likely) another collapse of the internationally integrated financial system. … [N]one of these scenarios fit the ‘black swan’ theory of difficult-to-predict events. All three fall within the realm of normal expectations in history, science and economics.” (The Case for the Green New Deal, pg 64)

A final major influence acknowledged by Pettifor is American economist Herman Daly, pioneer of steady-state economics. She places this idea at the center of the Green New Deal:

“our economic goal is for a ‘steady state’ economy … that helps to maintain and repair the delicate balance of nature, and respects the laws of ecology and physics (in particular thermodynamics). An economy that delivers social justice for all classes, and ensures a liveable planet for future generations.” (The Case for the Green New Deal, pg 66)

Beyond a clear endorsement of this principle, though, Pettifor’s book doesn’t offer much detail on how our transportation system, food provisioning systems, etc, should be transformed. That’s no criticism of the book. Providing a clear explanation of the need for transformation in monetary policy; why the current system of “free mobility” of capital allows private finance to work beyond the reach of democratic control, with disastrous consequences for income equality and for the environment; and how finance was brought under public control before and can be again – this  is a big enough task for one short book, and Pettifor carries it out with aplomb.

Some paths are ruinous. Others are not.

Writing in The Nation in November of 2018, Daniel Aldana Cohen set out an essential corrective to the tone of most public discourse:

“Are we doomed? It’s the most common thing people ask me when they learn that I study climate politics. Fair enough. The science is grim, as the UN Intergovernmental Panel on Climate Change (IPCC) has just reminded us with a report on how hard it will be to keep average global warming to 1.5 degrees Celsius. But it’s the wrong question. Yes, the path we’re on is ruinous. It’s just as true that other, plausible pathways are not. … The IPCC report makes it clear that if we make the political choice of bankrupting the fossil-fuel industry and sharing the burden of transition fairly, most humans can live in a world better than the one we have now.” (The Nation, “Apocalyptic Climate Reporting Completely Misses the Point,” November 2, 2018; emphasis mine)

There’s a clear echo of Cohen’s statement in the introduction to A Planet To Win:

“we rarely see climate narratives that combine scientific realism with positive political and technological change. Instead, most stories focus on just one trend: the grim projections of climate science, bright reports of promising technologies, or celebrations of gritty activism. But the real world will be a mess of all three. (A Planet To Win, pg 3)

The quartet of authors are particularly concerned to highlight a new path in which basic human needs are satisfied for all people, in which communal enjoyment of public luxuries replaces private conspicuous consumption, and in which all facets of the economy respect non-negotiable ecological limits.

The authors argue that a world of full employment; comfortable and dignified housing for all; convenient, cheap or even free public transport; healthy food and proper public health care; plus a growth in leisure time –  this vision can win widespread public backing and can take us to a sustainable civilization.

A Planet To Win dives into history, too, with a picture of the socialist housing that has been home to generations of people in Vienna. This is an important chapter, as it demonstrates that there is nothing inherently shabby in the concept of public housing:

“Vienna’s radiant social housing incarnates its working class’s socialist ideals; the United States’ decaying public housing incarnates its ruling class’s stingy racism.” (A Planet To Win, pg 127)

Likewise, the book looks at the job creation programs of the 1930s New Deal, noting that they not only built a vast array of public recreational facilities, but also carried out the largest program of environmental restoration ever conducted in the US.

The public co-operatives that brought electricity to rural people across the US could be revitalized and expanded for the era of all-renewable energy. Fossil fuel companies, too, should be brought under public ownership – for the purpose of winding them down as quickly as possible while safeguarding workers’ pensions.

In their efforts to present a New Green Deal in glowingly positive terms, I think the authors underestimate the difficulties in the energy transition. For example, they extol a new era in which Americans will have plenty of time to take inexpensive vacations on high-speed trains throughout the country. But it’s not at all clear, given current technology, how feasible it will be to run completely electrified trains through vast and sparsely populated regions of the US.

In discussing electrification of all transport and heating, the authors conclude that the US must roughly double the amount of electricity generated – as if it’s a given that Americans can or should use nearly as much total energy in the renewable era as they have in the fossil era.1

And once electric utilities are brought under democratic control, the authors write, “they can fulfill what should be their only mission: guaranteeing clean, cheap, or even free power to the people they serve.” (A World To Win, pg 53; emphasis mine)

A realistic understanding of thermodynamics and energy provision should, I think, prompt us to ask whether energy is ever cheap or free – (except in the dispersed, intermittent forms of energy that the natural world has always provided).

As it is, the authors acknowledge a “potent contradiction” in most current recipes for energy transition:

“the extractive processes necessary to realize a world powered by wind and sun entail their own devastating social and environmental consequences. The latter might not be as threatening to the global climate as carbon pollution. But should the same communities exploited by 500 years of capitalist and colonial violence be asked to bear the brunt of the clean energy transition …?” (A Planet To Win, pg 147-148)

With the chapter on the relationship between a Green New Deal in the industrialized world, and the even more urgent challenges facing people in the Global South, A World To Win gives us an honest grappling with another set of critical issues. And in recognizing that “We hope for greener mining techniques, but we shouldn’t count on them,” the authors make it clear that the Green New Deal is not yet a fully satisfactory program.

Again, however, they accomplish a lot in just under 200 pages, in support of their view that “An effective Green New Deal is also a radical Green New Deal” (A Planet To Win, pg 8; their emphasis). The time has long passed for timid nudges such as modest carbon taxes or gradual improvements to auto emission standards.

We are now in “a trench war,” they write, “to hold off every extra tenth of a degree of warming.” In this war,

“Another four years of the Trump administration is an obvious nightmare. … But there are many paths to a hellish earth, and another one leads right down the center of the political aisle.” (A Planet To Win, pg 180)


1 This page on the US government Energy Information Agency website gives total US primary energy consumption as 101 quadrillion Btus, and US electricity use as 38 quadrillion Btus. If all fossil fuel use were stopped but electricity use were doubled, the US would then use 76 quadrillion Btus, or 75% of current total energy consumption.

Beyond computational thinking – a ‘cloud of unknowing’ for the 21st century

Also published at Resilience.org

New Dark Age: Technology and the End of the Future, by James Bridle, Verso Books, 2018

If people are to make wise decisions in our heavily technological world, is it essential that they learn how to code?

For author and artist James Bridle, that is analogous to asking whether it is essential that people be taught plumbing skills.

Of course we want and need people who know how to connect water taps, how to find and fix leaks. But,

learning to plumb a sink is not enough to understand the complex interactions between water tables, political geography, ageing infrastructure, and social policy that define, shape and produce actual life support systems in society.” (Except where otherwise noted, all quotes in this article are from New Dark Age by James Bridle, Verso Books 2018)

Likewise, we need people who can view our technological society as a system – a complex, adaptive and emergent system – which remains heavily influenced by certain motives and interests while also spawning new developments that are beyond any one group’s control.

Bridle’s 2018 book New Dark Age takes deep dives into seemingly divergent subjects including the origins of contemporary weather forecasting, mass surveillance, airline reservation systems, and Youtube autoplay lists for toddlers.  Each of these excursions is so engrossing that it is sometimes difficult to hold his central thesis in mind, and yet he weaves all the threads into a cohesive tapestry.

Bridle wants us to be aware of the strengths of what he terms “computational thinking” – but also its critical limitations. And he wants us to look at the implications of  the internet as a system, not only of power lines and routers and servers and cables, but also of people, from the spies who tap into network nodes to monitor our communications, to the business analysts who devise ways to “monetize” our clicks, to the Facebook groups who share videos backing up their favoured theories.

Wiring of the SEAC computer, which was built in 1950 for the U.S. National Bureau of Standards. It was used until 1964, for purposes including meteorology, city traffic simulations, and the wave function of  the helium atom. Image from Wikimedia Commons.

From today’s weather, predict tomorrow’s

Decades before a practical electronic computer existed, pioneering meteorologist Lewis Fry Richardson1 thought up what would become a “killer app” for computers.

Given current weather data – temperature, barometric pressure, wind speed – for a wide but evenly spaced matrix of locations, Richardson reasoned that it should be possible to calculate how each cell’s conditions would interact with the conditions in adjacent cells, describe new weather patterns that would arise, and therefore predict tomorrow’s weather for each and all of those locations.

That method became the foundation of contemporary weather forecasting, which has improved by leaps and bounds in our lifetimes. But in 1916, when Richardson first tried to test his ideas they were practically useless. The method involved so many calculations that Richardson worked for weeks, then months, then years to work out a ‘prediction’ from a single day’s weather data.

But by the end of World War II, the US military had developed early electronic computers which could begin to make Richardson’s theory a useful one. To military strategists, of course, the ability to predict weather could provide a great advantage in war. Knowing when a particular attack would be helped or hindered by the weather would be a great boon to generals. Even more tantalizingly, if it were possible to clearly understand and predict the weather, it might then also be possible to control the weather, inflicting a deluge or a sandstorm, for example, on vulnerable enemy forces.

John von Neumann, a mathematician, Manhattan Project physicist and a major figure in the development of computers, summed it up.

In what could be taken as the founding statement of computational thought, [von Neumann] wrote: ‘All stable processes we shall predict. All unstable processes we shall control.’”

Computational thinking, then, relied on the input of data about present conditions, and further data on how such conditions have been correlated in the past, in order to predict future conditions.

But because many aspects of our world are connected in one system – an adaptive and emergent system – this system spawns new trends which behave in new ways, not predictable simply from the patterns of the past. In other words, in the anthropocene age our system is not wholly computable. We need to understand, Bridle writes, that

technology’s increasing inability to predict the future – whether that’s the fluctuating markets of digital stock exchanges, the outcomes and applications of scientific research, or the accelerating instability of the global climate – stems directly from these misapprehensions about the neutrality and comprehensibility of computation.”

Take the case of climate studies and meteorology. The technological apparatus to collect all the data, crunch the numbers, and run the models is part of a huge industrial infrastructure that is itself changing the climate (with the internet itself contributing an ever-more significant share of greenhouse gas emissions). As a result the world’s weather is ever more turbulent, producing so-called ‘100 year storms’ every few years. We can make highly educated guesses about critical climatic tipping points, but we are unable to say for sure when these events will occur or how they will interact.

Age-old traditional knowledge of ways to deal with this week’s or this year’s weather is becoming less reliable. Scientists, too, should acknowledge the limits of computational thinking for their work:

In a 2016 editorial for the New York Times, computational meteorologist and past president of the American Meteorological Society William B. Gail cited a number of patterns that humanity has studied for centuries, but that are disrupted by climate change: long-term weather trends, fish spawning and migration, plant pollination, monsoon and tide cycles, the occurrence of ‘extreme’ weather events. For most of recorded history, these cycles have been broadly predictable, and we have built up vast reserves of knowledge that we can tap into in order to better sustain our ever more entangled civilisation.”

The implications are stark: “Gail foresees a time in which our grandchildren might conceivably know less about the world in which they live than we do today, with correspondingly catastrophic events for complex societies.”

World map of submarine communication cables, 2015. Cable data by Greg Mahlknecht, world map by Openstreetmap contributors. Accessed through Wikimedia Commons.

Lines of power

In many ways, Bridle says, we can be mislead by the current view of the internet as a “cloud”. Contrary to our metaphor, he writes, “The cloud is not weightless; it is not amorphous, or even invisible, if you know where to look for it.” To be clear,

It is a physical infrastructure consisting of phone lines, fibre optics, satellites, cables on the ocean floor, and vast warehouses filled with computers, which consume huge amounts of water and energy and reside within national and legal jurisdictions. The cloud is a new kind of industry, and a hungry one.”

We have already referred to the rapidly growing electricity requirements of the internet, with its inevitable impact on the world’s climate. When we hear about “cloud computing”, Bridle also wants us to bear in mind the ways in which this “cloud” both reflects and reinforces military, political and economic power relationships:

The cloud shapes itself to geographies of power and influence, and it serves to reinforce them. The cloud is a power relationship, and most people are not on top of it.”

It is no accident, he says, that maps of internet traffic trace pathways of colonial power that are hundreds of years old. And we shouldn’t be surprised that the US military-intelligence complex, which gave birth to internet protocols, have also installed wiretapping equipment and personnel at junctions where trans-oceanic cables come ashore in the US, allowing them to scoop up far more communications data than they can effectively monitor.2

These power relationships come into play in determining not only what is visible in our web applications, but what is hidden. Bridle is a keen plane-spotter, and he marvels at flight-tracking websites which show, in real time, the movements of thousands of commercial aircraft around the world. “The view of these flight trackers, like that of Google Earth and other satellite image services, is deeply seductive,” he says, but wait:

This God’s-eye view is illusory, as it also serves to block out and erase other private and state activities, from the private jets of oligarchs and politicians to covert surveillance flights and military manoeuvres. For everything that is shown, something is hidden.”

Aviation comes up frequently in the book, as its military and commercial importance is reflected in the outsize role aviation has played in the development of computing and communications infrastructure. Aviation provides compelling examples of the unintended, emergent consequences of this technology.

High anthropoclouds in the sky of Barcelona, 2010, accessed through Wikimedia Commons. The clouds created by aircraft have an outsize impact on climate change. And climate change, Bridle writes, contributes to the increasingly vexing problem of “clear air turbulence” which threatens aircraft but cannot be reliably predicted.

On the last day of October, just a few months after New Dark Age was published, I found myself at Gatwick International Airport near London. I wanted to walk to the nearby town of Crawley to pick up a cardboard packing box. Though the information clerks in the airport terminal told me there was no walking route to Crawley, I had already learned that there was in fact a multi-use cycling lane, and so I hunted around the delivery ramps and parking garage exits until I found my route.

It was a beautiful but noisy stroll, with a brook on one side, a high fence on the other, and the ear-splitting roar of jet engines rising over me every few minutes. Little did I know that in just over a month this strange setting would be a major crime scene, as the full force of the aeronautical/intelligence industry pulled out all stops to find the operators of unauthorized drones, while hundreds of thousands of passengers were stranded in the pre-Christmas rush.

Another month has passed and no perpetrators have been identified, leading some to wonder if the multiple drone sightings were all mistakes. But in any case, aviation experts have long agreed that it’s just a matter of time before “non-state actors” manage to use unmanned aerial vehicles to deadly effect. Wireless communications, robotics, and three-dimensional location systems are now so widely available and inexpensive, it is unrealistic to think that drones will always be controlled by or even tracked by military or police authorities.

The exponential advance of artificial stupidity

Bridle’s discussion of trends in artificial intelligence is at once one of the most intriguing and, to this layperson at least, one of the less satisfying sections of the book. Many of us have heard about a new programming approach, following which a computer program taught itself to play the game Go, and soon was able to beat the world’s best human players of this ancient and complex game.

Those of us who have had to deal with automated telephone-tree answering systems, as much as we may hate the experience, can recognize that voice-recognition and language processing systems have also gotten better. And Google Translate has improved by leaps and bounds in just a few years time.

Bridle’s discussion of the relevant programming approaches presupposes a basic familiarity with the concept of neural networks. Since he writes so clearly about so many other facets of computational thinking, I wish he had chosen to spell out the major approaches to artificial intelligence a bit more for those of us who do not have degrees in computer science.

When he discusses the facility of Youtube in promoting mindless videos, and the efficiency of social media in spreading conspiracy theories of every sort, his message is lucid and provocative.

Here the two-step dance between algorithms and human users of the web produces results that might be laughable if they weren’t chilling. Likewise, strange trends develop out of interplay between Google’s official “mission” – “to organize the world’s information” – and the business model by which it boosts its share price – selling ads.

The Children’s Youtube division of Google has been one of Bridle’s research interests, and those of us fortunate enough not to be acquainted with this realm of culture are likely to be shocked by what he finds.

You might ask what kind of idiot would name a video “Surprise Play Doh Eggs Peppa Pig Stamper Cars Pocoyo Minecraft Surfs Kinder Play Doh Sparkle Brilho”. A clever idiot, that’s who, an idiot who may or may not be human, but who knows how to make money. Bridle explains the motive:

This unintelligible assemblage of brand names, characters and keywords points to the real audience for the descriptions: not the viewer, but the algorithms that decide who sees which videos.”

These videos are created to be seen by children too young to be reading titles. Youtube accommodates them – and parents happy to have their toddlers transfixed by a screen – by automatically assembling long reels of videos for autoplay. The videos simply need to earn their place in the playlists with titles that contain enough algorithm-matching words or phrases, and hold the toddler’s attention long enough for ads to be seen and the next video to begin.

The content factories that churn out videos by the millions, then, must keep pace with current trends while spending less on production than will be earned by the accompanying ads, which are typically sold on a “per thousand views” basis.

Is this a bit of a stretch from “organizing the world’s information”? Yes, but what’s more important, a corporation’s lofty mission statement, or its commercial raison d’être? (That is, to sell ads.)

When it comes to content aimed at adults the trends are just as troubling, as Bridle’s discussion of conspiracy theories makes clear.

According to the Diagnostic and Statistical Manual of Mental Disorders, he explains, “a belief is not a delusion when it is held by a person’s ‘culture or subculture’.”

But with today’s social media, it is easy to find people who share any particular belief, no matter how outlandish or ridiculous that belief might seem to others:

Those that the psychiatric establishment would have classified as delusional can ‘cure’ themselves of their delusions by seeking out and joining an online community of like minds. Any opposition to this worldview can be dismissed as a cover-up of the truth of their experience ….”

This pattern, as it happens, reflects the profit-motive basis of social media corporations – people give a media website their attention for much longer when it spools videos or returns search results that confirm their biases and beliefs, and that means there are more ads viewed, more ad revenue earned.

If Google and other social media giants do a splendid job of “organizing the world’s information”, then, they are equally adept at organizing the world’s misinformation:

The abundance of information and the plurality of worldviews now accessible to us through the internet are not producing a coherent consensus reality, but one riven by fundamentalist insistence on simplistic narratives, conspiracy theories, and post-factual politics. It is on this contradiction that the idea of a new dark age turns: an age in which the value we have placed upon knowledge is destroyed by the abundance of that profitable commodity, and in which we look about ourselves in search of new ways to understand the world.”

Our unknowable future

After reading to the last page of a book in which the author covers a dazzling array of topics so well and weaves them together so skillfully, it would be churlish to wish he had included more. I would hope, however, that Bridle or someone with an equal gift for systemic analysis will delve into two questions that naturally arise from this work.

Bridle notes that the energy demands of our computational network are growing rapidly, to the point that this network is a significant driver of climate change. But what might happen to the network if our energy supply becomes effectively scarce due to rapidly rising energy costs?3

Major sectors of the so-called Web 2.0 are founded in a particular business model: services are provided to the mass of users “free”, while advertisers and other data-buyers pay for our attention in order to sell us more products. What might happen to this dominant model of “free services”, if an economic crash means we can’t sustain consumption on anything close to the current scale?

I suspect Bridle would say that the answers to these questions, like so many others, do not compute. Though computation can be a great tool, it will not answer many of the most important questions.

In the morass of information/misinformation in which our network engulfs us, we might find many reasons for pessimism. But Bridle urges us to accept and even welcome the deep uncertainty which has always been a condition of our existence.

As misleading as the “cloud” may be as a picture of our computer network, Bridle suggests we can find value if we take a nod from the 14th-century Christian mystic classic  “The Cloud of Unknowing.” Its anonymous author wrote, “On account of pride, knowledge may often deceive you …. Knowledge tends to breed conceit, but love builds.”

Or in Bridle’s 21st century phrasing,

It is this cloud that we have sought to conquer with computation, but that is continually undone by the reality of what we are attempting. Cloudy thinking, the embrace of unknowing, might allow us to revert from computational thinking, and it is what the network itself urges upon us.”


Photo at top: anthropogenic clouds over paper mill UPM-Kymmene, Schongau, 2013. Accessed at Wikimedia Commons.


NOTES

1 For an excellent account of the centuries-long development of contemporary meteorology, including the important role of Lewis Fry Richardson, see Bill Streever’s 2016 book And Soon I Heard a Roaring Wind: A Natural History of Moving Air.
2 More precisely, though intelligence agents can often zero in on suspicious conversations after a crime has been committed or an insurgency launched, the trillions of bits of data are unreliable sources of prediction before the fact.
3 Kris de Decker has posed some intriguing possibilities in Low-Tech Magazine. See, for example, his 2015 article “How to Build a Low-tech Internet”.

The clean green pipeline machine – a free-market fairy tale

A review of Donald Gutstein’s The Big Stall

Also published at Resilience.org

In late 2016 Canadian Prime Minister Justin Trudeau was ready to spell out his government’s “Pan-Canadian Framework on Clean Growth and Climate Change”. His pitch to Canadians went along these lines:

We recognize that climate change is a serious challenge and that we must transition to a new economy which dramatically cuts carbon emissions. To make this transition we need a strong economy and a united country. To have a strong economy we must allow our fossil fuel sector to continue to grow. And to keep our country united while we impose a modest price on carbon, we must also build new pipelines so that oil sands extraction can grow. That is why my government is proud to lead the way in reducing carbon emissions, by ensuring that the oil sands sector emits more carbon.

If you think that sounds absurd, then you’re likely not part of Canada’s financial, industrial, political or media elite, who for the most part applauded both the minimal carbon tax and the substantial oil sands expansions being pushed by Trudeau and by Alberta Premier Rachel Notley.

How did we get to a point where oil companies and governments are accepted as partners in devising climate action plans? And why did these climate action plans, decade after decade, permit fossil fuel companies to continue with business as usual, while carbon emissions grew steadily?

This is the subject of Donald Gutstein’s new book The Big Stall: How Big Oil and Think Tanks are Blocking Action on Climate Change in Canada. (James Lorimer & Co., Toronto, October 2018)

Though Gutstein takes a deep dive into Canadian politics, industry and academia, much of his story also concerns the series of international conferences which attempted, with very little success, to come up with strong international solutions for a climate crisis that knows no borders. Thus The Big Stall has relevance to climate change campaigners in many countries.

By the early 1990s, Gutstein says, the pervasive influence of neoliberal economic theory was leading to “a silent corporate takeover of the United Nations Framework Convention on Climate Change”.

Neoliberal theory said that the “free market”, not government, should be relied on to solve the problem of climate change. That suited the oil industry, because the one thing they feared most was a hard-and-fast regulatory limit on carbon emissions.

An ad for tourism in the Canadian Rockies, perhaps? Not so – this is a still from the Alberta government’s tv ad series with the tagline “The TransMountain Pipeline is on  Canada’s side.” At keepcanadaworking.ca.

Lessons from Big Tobacco

In common with many other historians, Gutstein pays close attention to the strong links between public relations campaigns used by the tobacco industry and the similar strategies employed by Big Oil, particularly in sowing public confusion about the scientific consensus.

But as Gutstein’s book makes clear, the mainstream environmental movement failed to absorb a key lesson from the decades-long struggle to combat tobacco addiction: the industry whose products are the root of the problem should not be relied on to devise solutions.

Corporate participation in COP21 [Paris 2015] and in the conferences and talks leading up to and following it stands in stark contrast with the corporate role in the World Health Organization’s Framework Convention on Tobacco Control. There, tobacco interests are excluded, a fact which helps explain that treaty’s rapid progress in curtailing tobacco use. … At the climate talks, in sharp contrast, there is no conflict between Big Oil’s interests and public health and environmental interests. The corporate sector succeeded in making itself integral to the process.” (The Big Stall, page 158-159)

Fossil fuel interests assured their seat at the table in part by sponsoring the negotiations. In Paris in 2015, Gutstein writes,

Big Oil even partly financed the talks. France could have easily paid the C$255-million cost, but by allowing corporations to contribute 20 per cent, the host country encouraged the private sector to be part of the inner circle that was planning and organizing the event.” (The Big Stall, page 160)

The result was that in spite of inspiring rhetoric and lofty goals, the Paris Agreement contained no binding emissions reduction requirements. Instead countries were free to make their own reduction “pledges” with no penalties for missing their targets. This result was perfectly predictable, Gutstein says: “Paris was guided to its inevitable conclusion by the veiled hand of Big Oil and its corporate and political allies.” (The Big Stall, page 155)

He traces the pattern of corporate influence over climate negotiations back to the role of Canadian businessman Maurice Strong at the 1992 Rio Summit, and former Norwegian Prime Minister Gro Brundtland at the eponymous Brundtland Commission in the 1980s.

Brundtland helped popularize the phrase “sustainable development” – a phrase which Gutstein says has come to mean little beyond sustaining the profits and asset values of major corporations. Thus fossil fuel interests can forge ahead with plans to extract even more nonrenewable resources while forestalling international action to reduce carbon emissions – and then sign declarations of support for “sustainable development”.

An ad for Wind Turbines? Flowers? Puppies? Kites? None of the above – this is a still from an Alberta government tv spot promoting the TransMountain Pipeline expansion, which is intended to double the amount of bitumen exported through the Port of Vancouver.

To tax or not to tax carbon

The story gets complicated, of course, because corporate figures do not always agree on the best ways to protect their bottom lines, and sometimes they respond to changing political winds in different ways.

Gutstein covers these shifts in corporate spin in great detail. Put simply, major fossil fuel interests went from denying that there was any scientific consensus on the reality or cause of global warming, to support for carbon-emissions trading markets, to support for a modest carbon tax.

In Canada in particular, a carbon tax was seen as a necessary concession to strong public concern that Canada wasn’t doing its part to mitigate global warming. Recognizing that the oil sands had a terrible reputation around the globe, oil interests hoped they could earn public favour by supporting a carbon tax. And politicians including Justin Trudeau pitched the carbon tax as an integral part of an indivisible package: we need to tax carbon to reduce emissions, while at the same time building new pipelines to ensure that oil sands extraction continues to grow.1

The common element in all of these fossil fuel corporation strategies is that there must not be any strict regulatory limit on carbon emissions – we must trust “the market”, in all its infinite wisdom, to arrive at emissions reductions. (When fossil fuel interests want subsidies, or need government help to get their products to market, then of course it is quite alright to deviate from free market principles.)

Gutstein makes clear that the level of carbon taxes advocated by fossil fuel interests is far too low to have a significant impact either on their profits or on national carbon emissions. Likewise, he says, the imposition of carbon taxes alone cannot substitute for the wide range of regulatory measures and incentives needed to make a rapid transition away from a fossil fuel economy. But he leaves unanswered another question: does he think carbon taxes could play an important role if they were set high enough to be effective, and were part of an appropriate package of other rules and incentives? In other words, if our political parties move beyond their fealty to neoliberal free-market ideology, should they enact effective carbon taxes?

The final corporate PR strategy that Gutstein discusses is the trend for fossil fuel companies to embrace the “market opportunity” of leading the transition to new energy systems. By publicizing their corporate efforts to buy wind turbines, study battery technology, or build heavily-subsidized prototypes of carbon-capture-and-sequestration plants, fossil fuel companies would like us to believe they are leading the way into a clean green future. But the important action happens behind the scenes, as fossil fuel companies continue to fight against any effective and compulsory limits on carbon emissions.

A clean green future? Major graphics in this article are stills from an Alberta-government funded tv ad series promoting the TransMountain Pipeline expansion. The ads do not show images of pipelines, tar sands open-pit mines, tailings ponds or refineries – just prosperous people and unspoiled environments. (At keepcanadaworking.ca.) Since the ads are paid for by a provincial government, and the TransMountain Pipeline is now owned by the federal government, fossil fuel industry adherence to “free market” principles can be flexible indeed.


FOOTNOTES

By the time The Big Stall was published, Trudeau’s grand bargain was in danger of failing on both fronts. Court cases and business decisions had delayed or cancelled most of the pending pipelines that would facilitate oil sands expansion. In the meantime the minimal carbon tax Trudeau has promised has been dubbed the “job-killing carbon tax” by the new Premier of Ontario and the federal Conservative Party, and the scheduled tax is now vehemently opposed by provincial leaders in about half of the country.

Quantifying climate hypocrisy – the Canada file

Also published at Resilience.org

Which nation shows greater hypocrisy in the struggle to limit climate change – the United States or Canada?

The US President, of course, misses no opportunity to dismiss scientific consensus, downplay the dangers of climate change, and promote fossil fuel use.

Canada’s Prime Minister, on the other hand, has been consistent in stating that the scientific consensus is undeniable, the danger is clear, and Canada must step up to the challenge of drastic carbon emissions reductions.

It was within the first few weeks of the Justin Trudeau administration that Canada surprised most observers by backing a call from island nations to hold global warming to 1.5°C, as opposed to the 2°C warming threshold that had been a more widely accepted official goal.1

Yet according to a new peer-reviewed study2 of countries’ pledged emissions reduction commitments following the Paris Agreement, Canada’s level of commitment would result in 5.1°C of global warming if all countries followed the same approach to carbon emissions. In this tally of the potential effects of national climate commitments, Canada ranks with the worst of the worst, a select club that also includes Russia, China, New Zealand and Argentina.

The actual carbon emissions policies of the US would result in a lesser degree of total calamity –  4°C of warming – if followed by all countries.

Behind this discrepancy between Canada’s professed goals and its actual policy is the lack of a global agreement on a fair method for allocating the remaining carbon emissions budget.

The Paris Agreement set a target for the limitation of global warming, and it was (relatively) straightforward to calculate how much more carbon can be emitted without blowing through that warming target. But countries remained free to decide for themselves what principles to follow in determining their fare share of emissions reductions.

The result?

Developed countries who committed to take the lead in reducing emissions and mobilizing finance for developing countries often submitted NDCs [Nationally Determined Contributions] that do not match the concepts of equity that they publicly supported.” (du Pont and Meinshausen, “Warming assessment of the bottom-up Paris Agreement emissions pledges”, Nature Communications.)

A fair way to count to 10

An old joke provides a good analogy for the slipperiness inherent in divvying up the global carbon budget. (My apologies to accountants everywhere, especially the one who first told me this joke.)

You ask a mathematician, “how much is 3 + 3 + 4?” She punches the numbers into her calculator, and tells you “3 + 3 + 4 is 10”.

But when you ask an accountant “how much is 3 + 3 + 4?” he sidles up and whispers in your ear, “How much do you want it to be?”

Though climate scientists can provide a simple number for how much additional carbon can be emitted globally before we hit our agreed-on warming threshold, each country’s ruling party decides for themselves how much they want their share of that carbon budget to be.

And the radically different circumstances of countries has resulted in radically different positions on what is fair.

A 2016 study published in Nature gives us insight into Canada’s position.

Entitled “Global mismatch between greenhouse gas emissions and the burden of climate change”, the study categorizes countries into how drastically and immediately they are hit by the effects of climate change. While all countries are already being impacted, the study found that Canada is among the 20% of countries who are suffering least from climate change.

Countries are also categorized according to their responsibility for climate change, and Canada is among the 20% who have contributed the most (on a per capita basis) in causing climate change.

In economic terms, those who do most to cause climate change while suffering the least damage from climate change are “free riders”. Those who do the least to cause climate change, but suffer the most from it, are “forced riders”.

The study shows that Canada is among the 20 “free riders” now, and will still be one of 16 “free riders” in 2030. The “forced riders” in both 2010 and 2030 include many African countries and small island nations. (Yes, that would be the same island nations that Canada claimed to be backing in 2015 in the call to adopt a 1.5°C warming threshold.)

“Figure 1. Global inequity in the responsibility for climate change and the burden of its impacts” in “Global mismatch between greenhouse gas emissions and the burden of climate change”, by Glenn Althor, James E. M. Watson and Richard A. Fuller, Nature, 5 February 2016. Countries shown in dark brown are in the highest quintile in emissions and in the lowest quintile of vulnerability to climate change. Countries in dark green are in the lowest quintile of emissions, but in the highest quintile of vulnerability. The top map shows this mismatch in 2010, the bottom map the projected mismatch in 2030.

Is there evidence that the “free riders” are trying to maintain their free-riding status as long as possible? According to du Pont, Meinshausen and their research colleagues, the answer is yes: most countries have set carbon emissions commitments that reflect their immediate self-interests. In the case of the major fossil fuel producers and consumers, that means the sum of their commitments adds up to a woefully inadequate global carbon emissions reduction.

An equity framework that dares not speak its name

In their discussion of the emissions reductions pledges made by nations following the Paris Agreement, du Pont and Meinshausen try to match these pledges with various approaches to equity. They note that the Intergovernmental Panel on Climate Change (IPCC) has listed five major equity frameworks. These frameworks are summarized in this table from an earlier paper:

Source: “Equitable mitigation to achieve the Paris Agreement goals”, by Yann Robiou du Pont, M. Louise Jeffery, Johannes Gütschow, Joeri Rogelj, Peter Christoff, and Malte Meinshausen, Nature, 19 December 2016

Of particular interest for our purposes is the final entry, CER or “Constant emissions ratio”. This has been defined as

[maintaining] current emissions ratios (‘constant emissions ratio’, or CER), so that each country continues to emit the same share of global emissions as it does at the moment, even as the total volume is cranked down.”3

In other words, those who have emitted an outsize share of carbon in the past get to preserve an outsize share of a shrinking pie in future, while those who have emitted very little carbon to date are restricted even more drastically in future.

If that sounds anything but fair to you, you are not alone. Du Pont and Meinshausen say the Constant Emissions Ratio “is considered unfair and not openly supported by any country.”

Yet when they looked at the Nationally Determined Contributions following the Paris Agreement, they found that the Constant Emissions Ratio “implicitly matches many developed countries’ targets”.

The Constant Emissions Ratio framework for these countries would be the least stringent of the IPCC’s equity frameworks – that is, it would impose the smallest and slowest cuts in carbon emissions.

In the case of Canada and other members of the climate rogues gallery, their post-Paris commitments turn out to be even weaker than commitments calculated by the Constant Emissions Ratio method.

Former ExxonMobil CEO and US Secretary of State Rex Tillerson with Canadian Prime Minister Justin Trudeau.

Follow the money

Let’s take a closer look at some of the Nationally Determined Contributions – individual nations’ commitments towards the global goal of rapid decarbonization.

“Selected Country Pledges Under the Paris Agreement and GHG Emissions”, from “The Paris Agreement on Climate Change”, by Radoslav Dimitrov, published by University of Western Ontario, March 2018.

Canada’s commitment ranks among the weakest of this lot for three reasons. First, the Reduction Target of 30% is near the low end of the scale, with several other industrial economies pledged to Reduction Targets of 40% or more. Second, the Target Year for achievement of the Reduction, 2030, is five years beyond the US and Brazil Target Dates of 2025. This matters, because every year that we continue to emit high amounts of carbon makes it that much more difficult to forestall catastrophic climate change.

Third, the Base Year is also very significant, and on this measure Canada also ranks with the poorest commitments. The European Union, for example, pledges to reduce from a Base Year of 1990, while Canada will work from a Base Year of 2005.

Between 1990 and 2005, Canada’s greenhouse-gas emissions rose 25%,4 and so if Canada’s emissions in 2030 are 30% lower than in 2005, that is only about a 12% reduction compared to 1990.

Canada’s national government claims to understand that swift and dramatic action must be taken to reduce carbon emissions. So why would this government then commit to only a 12% emissions reduction, compared to 1990, as a target for 2030? Let’s follow the money, with a quick look at the relative influence of the fossil fuel industry in Canada.

Radoslav Dimitrov writes

the energy sector (oil, gas and electricity) is important to the Canadian economy, accounting for approximately 10% of national GDP in 2016, more than a quarter of public and private investment, and approximately 29% of exports.”5

Notably absent in the above paragraph is employment. Natural Resources Canada says that in 2017, only 5% of employment was either directly or indirectly within the energy sector, and that includes the electricity sector.6

Both of Canada’s traditional ruling parties like to talk about their commitment to “good middle-class jobs”. But given the scale of the environmental crisis we face, how big a challenge would it be to fund an immediate job retraining and investment program to start replacing fossil fuel jobs with renewable energy jobs? Couldn’t a committed government-and-industry program find new “middle-class jobs” for 3% or 4% of the working-age population?

I think the answer is yes … but as for capital investment, that’s another story. The fossil fuel industry accounts for closer to 25% of Canadian investment, and an immediate and sustained push to reduce the output of carbon-intensive fuels would result in a dramatic and immediate drop in the stock-market value of fossil-fuel corporations.  Those stocks are a big part of the portfolios of most people in Canada’s stock-owning class.

Alberta Premier Rachel Notley and Canadian Prime Minister Justin Trudeau

A two-pronged strategy which starts with “dig the hole deeper”

Since before his election as national leader, Canadian Prime Minister Justin Trudeau has proclaimed the need to “balance the environment and the economy”. What has this meant in practice?

As the industry-friendly Financial Post put it in 2015,

The encouraging news — at least from the perspective of the energy sector — is that Mr. Trudeau seems onside with continued oil industry expansion and that his climate change program aims to support it rather than contain it.”7

Part of Trudeau’s program was a commitment to establishing a modest national price on carbon. He found a prominent early ally in an unlikely location, Alberta. There the NDP Premier Rachel Notley not only implemented a carbon price, but also announced a cap on carbon emissions from Alberta’s oil and gas sector.

Notably, however, that cap will start to reduce tar sands emissions only in 2030, and in the meantime emissions from that sector are projected to rise 50%, from 66 megatonnes/year to 100 megatonnes.

The Alberta plan thus mirrors Trudeau’s national policy. While championing a modest carbon tax, the Prime Minister has consistently pushed for the construction of major new pipelines – and the business case for these pipelines is that they are essential in the expansion of tar sands extraction.

On this front, at least, Trudeau is willing to put our money where his mouth is. Last summer, the Trudeau government invested $4.5 billion to buy the TransMountain Pipeline, with the prospect of spending at least several billion more in a much delayed project designed to almost triple the line’s bitumen-carrying capacity.

Meanwhile a national price on carbon emissions of $20/tonne is scheduled to be implemented in January 2019, rising to $50/tonne in 2022. While most environmentalists see this as a positive step, they also believe the price needs to be much higher if it is to result in dramatic emission reductions.

Setting a low bar and failing to clear it

As we have seen, the Nationally Determined Contribution that Canada has offered in response to the Paris Agreement is one of the world’s weakest.

The evidence to date suggests that Canada is on track to miss its own low target. Canada’s Environment Commissioner Julie Gelfand concluded in March 2018 that Canada is making little progress and will miss its 2030 targets unless both the federal and provincial governments step up the pace.8 And just this week, the UN Environment Program said that Canada is on track to miss its emissions targets for both 2020 and 2030.9

That should come as no surprise: it’s hard to cut national emissions by 30%, when you’re also fully committed to the continued rapid expansion of the country’s most carbon-intensive industrial sector – tar sands extraction.

Photo credits: all photos are publicity photos released by the Prime Minister’s Office, Canada, taken by Adam Scotti, accessed at https://pm.gc.ca/eng/photos.


References

1  “Catherine McKenna pushes for 1.5 C target in Paris climate talks”, Globe & Mail, December 6, 2015

2  “Warming assessment of the bottom-up Paris Agreement emissions pledges”, by Yann Roubiou du Pont and Malte Meinshausen, Nature Communications, accessed at https://www.nature.com/articles/s41467-018-07223-9.pdf

3  In “US trying harder on climate change than ‘unambitious’ China, says study”, CarbonBrief, 20 December 2016

4  “Canada’s greenhouse-gas emissions rose sharply between 1990 and 2005: study”, April 22, 2008, accessed at CBC News.

5  “Selected Country Pledges Under the Paris Agreement and GHG Emissions”, from “The Paris Agreement on Climate Change”, by Radoslav Dimitrov, published by University of Western Ontario, March 2018.

6  “Energy and the economy”, on the Natural Resources Canada website, accessed Nov 28 2018.

7  “Justin Trudeau aims to strike balance between environment, economy with carbon policy”, Financial Post, February 6, 2015

8  “Canada, provinces lack clear plan to adapt to climate change, auditors say”, by Mia Rabson, Canadian Press, 27 March 2018

9  “Canada set to miss C02 emissions target, UN says,” in Toronto Star, 28 November 2018, accessed in Pressreader.

Can nuclear power extend the economic expansion?

Also published at Resilience.org and BiophysEco.

Richard Rhodes’ new book Energy: A Human History does an excellent job of describing the scientific and technological hurdles that had to be cleared in the development of, for example, an internal combustion engine which can convert refined petroleum into forward motion.

But he gives short shrift to the social and political forces that have been equally important in determining how technological advances shape our world. That internal combustion engine might be a wonder of ingenuity, but was there any scientific reason we should make multi-tonne vehicles the primary mode of transportation for single passengers in cities, drastically reconfiguring urban landscapes in the process? When assiduous research resulted in more efficient engines, did science also dictate that we should use those engines to drive bigger and heavier SUV’s, and then four-wheel-drive, four-door pick-up trucks, to our suburban grocery superstores?

Unfortunately, Rhodes presents the benefits of modern science as if they are all inextricably wrapped up in our current high-energy-consumption economy, implying that human prosperity must end unless we find ways to maintain this high-energy system.

In this second part of a look at Energy (first installment here), we’ll delve into these questions as they relate to Rhodes’ strident defense of nuclear power.

To set the context, Rhodes argues that the only realistic – and the most ethical – way forward is a gradual progression on the path we are already taking, and that means an “all energy sources except coal and oil” strategy:

“Every energy system has its advantages and disadvantages …. And given the scale of global warming and human development, we will need them all if we are to finish the centuries-long process of decarbonizing our energy supply – wind, solar, hydro, nuclear, natural gas.”1

Three key points here: First, Rhodes recognizes the severity and urgency of the climate problem.

Second, he believes we have been “decarbonizing our energy supply” for centuries. That is true with respect to intensity: we now release fewer units of carbon for each unit of energy than we did in the 19th century.2 But in an overall sense, we emit vastly more carbon cumulatively (and vastly more carbon per capita) than we used to. It is the overall carbon emissions, not the carbon/energy intensity ratio, that matters to the climate.

Third, while energy production via natural gas has relatively low carbon emissions at the point of combustion, there is wide recognition that methane leaks throughout the production/transmission chain are major sources of greenhouse gas emissions, which may counteract the benefits of switching from coal to gas. Rhodes makes only an oblique reference to this critical problem in current natural gas usage.

It’s the issue of nuclear power, though, that really brings out Rhodes’ rhetorical heat. Consider this ad hominem attack:

“Antinuclear activists, whose agendas originated in a misinformed neo-Malthusian foreboding of overpopulation (and a willingness at the margin to condemn millions of their fellow human beings to death from disease and starvation), may fairly be accused of disingenuousness in their successive arguments against the safest, least polluting, least warming, and most reliable energy source humanity has yet devised.3

If someone warns that a social or technological development is likely to result in mass death, does that logically mean they want mass death, or that they are indifferent to it? Obviously not. They may well be sincerely motivated by a desire to save lives – just as those who promote the same social or technological development might sincerely believe that is the best way to save lives and promote prosperity.

So I think it is Rhodes who is being disingenuous with his ad hominem argument – even though I happen to agree with some of his substantive points on the relative safety of nuclear power.

What could go wrong?

As one who has lived for fifteen years just downwind of major nuclear facilities – first a uranium processing plant, more recently a nuclear power generator – I’ve had lots of incentive to study the potential safety hazards of the nuclear power industry. And on the issue of the relative operating safety of nuclear power generation, my conclusions have been much the same as those Rhodes puts forth.

I frequently take a short bike ride along the Lake Ontario Waterfront Trail through the buffer zone around the Darlington Nuclear Generating Station. Is this a significant hazard to my health? Yes it is, but only because this route also requires me to share the road with trucks and cars for a few kilometers, and to ride right beside a stream of pollution-emitting traffic on Ontario’s busiest expressway.

As a close neighbour of nuclear facilities, my risk of death due to sudden catastrophic nuclear power accident is several orders of magnitude lower than my risk of death due to sudden catastrophic traffic accident. (Worldwide, well over a million people are killed in traffic accidents per year.4)

As for the health risk due to chronic exposure to the amounts of radiation that are emitted by a current Canadian nuclear generating plant, I fully concur with Rhodes’ more general conclusion: “Low doses of radiation are not only low risk; they’re also lost in the noise of other sources of environmental insult.”5

Likewise, I share Rhodes’ conclusion that shutting down our existing nuclear power plants for environmental reasons, while continuing to rely on coal for a significant part of electricity generation, is daft6 – we should replace carbon-emitting generating systems first.

In my region, I would be sorry to see Darlington Nuclear Station shut down if Ontario were still significantly reliant on gas-powered peaker plants, as it is now. And given that we have a very long way to go in electrifying personal transportation and home heating, our electricity demand may increase significantly, making the transition to a fully renewable electricity generation system that much farther down the road. In that context, I think our existing nuclear power plants are a better option environmentally than continued or increasing use of any fossil fuel, natural gas included, for generation of electricity.

But should we commission and build new nuclear power plants? That is a very different question. Rhodes recognizes that the economic viability of the nuclear power industry is very much in question, but he makes no significant attempt in Energy to resolve the economic question.

To adequately answer the economic viability question, we would need a much wider conception of science than the one that comes through in Rhodes’ book.7

Beyond physics and chemistry

The science Rhodes celebrates in Energy: A Human History falls almost entirely within very basic physics and chemistry. The discoveries and developments Rhodes discusses are highly significant, and they will always remain foundational – but they are not sufficient for a clear understanding of technological systems, which are also social phenomena.

A more recent scientific advance is essential in coming to grips with our current energy challenges. This is the concept of Energy Return on Investment (EROI). Over his long and distinguished career, ecologist Charles A.S. Hall posited that organisms, ecological communities, and human societies must derive more usable energy from their activities than the energy they invest in those activities. With this simple insight8, Hall gave economics a foundation in the very principles of thermodynamics that Rhodes reveres.

The resulting field of biophysical economics provides a deeper understanding of the socio-technological revolutions that Rhodes simply ascribes to “science”. After studying the Energy Return on Investment of major energy sources over the past 200 years, we can understand how the rapid exploitation of fossil fuels provided a huge boost in the the energy available to society, while simultaneously freeing the great majority of people from energy-procuring activities so that they could work instead at a wide variety of new activities and industries. We can understand that if any society is to use a high quantity of energy per person, while employing only a small number of people in its energy sector, then its energy sector needs a high rate of Energy Return on Investment.

With readily accessible supplies of coal, oil and natural gas, industrial civilization in the past 200 years has benefitted from a very high Energy Return on Investment. But with “sweet spots” exhausted or in depletion phases, the EROI of the fossil fuel economy has been in marked decline for the past few decades.

Thus one of the key questions about a supposed nuclear renaissance is, can the nuclear power industry achieve an EROI comparable to that of the fossil fuel economy we have known to date? Most published analyses say no9 – from an Energy Return On Investment standpoint, nuclear power generation is (at worst) not worth doing at all, or (at best) worth doing even though it will produce much more expensive energy than the energy we came to depend on during the twentieth century.

If nuclear power generation has a low EROI, in sum, it cannot and will not fuel a continued economic expansion.

Rhodes argues that nuclear power is vitally important because we really need it to extend our current model of prosperity to billions more people now and in coming generations, and he claims the mantle of science for this position. But a broader and deeper application of scientific analysis can deal with the economic viability questions about nuclear power that he simply sidesteps.

Illustration at top: high-voltage transmission lines on grounds of Darlington Nuclear Station, on north shore of Lake Ontario east of Toronto

 


NOTES

1Energy: A Human History, page 337 (return to text)

2This is a point explained in more detail by Vaclav Smil, who also gives a perspective on the relative degree of decarbonization. From 1900 to 2000, he says, “the average carbon intensity of the world’s fossil fuel supply kept on declining: when expressed in terms of carbon per unit of the global total primary energy supply, it fell from nearly 28 kg C/GJ [GigaJoule] in 1900 to just below 25 in 1950 and to just over 19 in 2010, roughly a 30% decrease; subsequently, as a result of China’s rapidly rising coal output, it rose a bit during the first decade of the twenty-first century.” Smil, Energy and Civilization: A History, page 270. (return to text)

3Energy: A Human History, page 336 (return to text)

4World Health Organization says there were 1.25 million traffic deaths in 2013. (return to text)

5Energy: A Human History, page 324 (return to text)

6This general statement must be qualified, of course, by noting that some particular nuclear plants should be shut down because their designs were inherently flawed to begin with, or because they have aged beyond the point where they can be maintained and operated safely. (return to text)

7Even if one accepts that the operating safety record of nuclear power stations is exemplary, there are the major issues of nuclear weapons proliferation, and the long-term storage of highly radioactive wastes. Rhodes doesn’t mention weapons proliferation, and he cavalierly dismisses the long-term disposal issue: “The notion that such waste must be successfully protected from exposure for hundreds of thousands of years is counter to how humans handle every other kind of toxic material we produce. We usually bury it, but we also discount its future risk, on the reasonable grounds that we owe concern to one or, at best, two generations beyond our own …” (Energy: A Human History, page 337, emphasis mine). Yes, that’s what we usually do, but in what sense is that “reasonable”? (return to text)

8Though the basic insight is simple, measuring and calculating EROI can be anything but simple. A key issue is deciding how far out to draw the boundaries of an analysis. As Hall, Lambert and Balogh noted in “EROI of different fuels and the implications for society” in 2014, “Societal EROI is the overall EROI that might be derived for all of a nation’s or society’s fuels by summing all gains from fuels and all costs of obtaining them. To our knowledge this calculation has yet to be undertaken because it is difficult, if not impossible, to include all the variables necessary to generate an all-encompassing societal EROI value”. (return to text)

9In Scientific American (April 2013) Mason Inman cited an EROI of 5 for nuclear electricity generation – lower than photovoltaic or wind generators, and only a small fraction of the EROI of 69 that Inman cited for global conventional oil production in 2011. In 2014 a meta-review of studies, EROI of different fuels and the implications for society, gave a mean EROI of 14 for nuclear power. A paper by the World Nuclear Association cites outliers among the published studies, highlighting a conclusion that nuclear generation of electricity has a higher average EROI than hydro or fossil fuel generating systems, and is “one order of magnitude more effective than photovoltaics and wind power”. (return to text)