Inequality, the climate crisis, and the frequent flier


If we are to make rapid progress in reducing carbon emissions, and do so in an equitable way, does everybody need to give up flying?

No, not at all – because most people don’t fly anyway, and have never flown. And among those privileged enough to fly, only a small minority fly often.

If most people gave up flying that would have little impact on emissions – because most people fly seldom or never.

Yet major carbon emissions reductions need to happen within the next several years. That’s much faster than any revolutionary new aviation technologies can be developed, let alone rolled out on a large scale. The way to dramatically and quickly reduce aviation emissions is as simple as it is obvious: the small minority of people who fly frequently should give up most of their airline journeys.

We can see clearly where rapid progress might be made when we recognize the tight correlation between global wealth control and global emissions.

On a global scale, and also within most individual countries, both income and wealth is dramatically skewed in favour of a small percentage of the population.

In the same fashion, carbon dioxide emissions are dramatically skewed, as an overwhelming share of the emissions causing the climate crisis are due to the lifestyles of a small proportion of the population.

A relatively affluent minority of the world’s population takes nearly all of the world’s aviation journeys, and within that minority, a small percentage of people take by far the most flights.

Within that wealthiest and most polluting sliver of the world’s population, flying typically accounts for the biggest share of their generally outsize contributions to the climate crisis. Meaning, if they are to reduce their emissions to a level consistent with international climate accords, they will need to change their flying from a frequent, routine practice into a rare, exceptional practice, or cease from flying at all.

Yet in all the sectors that combine to steer our industrial societies, the people that have a significant share of influence typically belong to the frequent fliers club. That is true throughout the corporate world, in major news and entertainment media, in academia, in nearly every level of government in affluent countries, and among the socio-economic elites in non-affluent countries. In all these social sectors, it has become routine over the past 50 years to get on a plane and fly to some formerly distant place multiple times a year, whether for business or for leisure.

The preceding paragraphs outline a daunting list of topics to try to cover in one blog post. We’ll have help from some very useful graphs. Here goes ….

Follow the money

Since flying is an expensive habit, even in monetary terms, we would expect that most flying is done by the people with the most money. Here’s one way of visualizing who has the money:

Global income and wealth inequality, from the World Inequality Report 2022, by Lucas Chancel (lead author), Thomas Piketty, Emmanuel Saez, and Gabriel Zucman, page 10.

As the chart above indicates, money is overwhelmingly concentrated in the hands of a small percentage of the global population – wealth is heavily skewed by class. And as the chart below indicates, money-making activities are overwhelmingly concentrated in some countries – wealth is heavily skewed by geography.

GDP per capita for selected regions and countries, 2010 – 2020, graph from Our World In Data based on World Bank data. The world average for 2020 was $16,608, while GDP per capita in wealthy countries was from 2.5 to about 4 times as high.

Ready for a surprise? You never woulda guessed, but carbon emissions are skewed in roughly the same ways.

Global Carbon Inequality, 2019, from the World Inequality Report 2022, by Lucas Chancel (lead author), Thomas Piketty, Emmanuel Saez, and Gabriel Zucman, page 18.


Per capita emissions across the world, 2019, from the World Inequality Report 2022, by Lucas Chancel (lead author), Thomas Piketty, Emmanuel Saez, and Gabriel Zucman, page 19.

The “Global Carbon Inequality” chart tells us that one half of global population are responsible for only a small share, 12%, of global warming emissions. The other half are responsible for 88% of global warming emissions. And just 10% of the population are responsible for nearly half the emissions.

The “Per capita emissions across the world” shows the dramatic variance in emission levels from various geographic regions. It might come as no surprise that both the top 10% and the middle 40% groups in North America leave most of their international rivals in a cloud of fossil fuel smoke, so to speak. Those who are modestly well off, or rich, in the US and Canada tend to live in big houses; drive, a lot, in big cars or “light trucks”; and travel by air frequently.

And in all areas of the world, the top 10% of emitters have per capita emissions far in excess of the middle 40% or lower 50% groups.

What does this mean for our collective hopes of slowing down the accelerating climate crisis? It means that most of the emission reductions must come from a relatively small share of the global population – particularly from the top 10% on a global scale, and to a lesser but still significant extent from the middle 40% within wealthy countries.

Consider this chart from the World Inequality Report.

Per capita emissions reduction requirements, US & France, from the World Inequality Report 2022, by Lucas Chancel (lead author), Thomas Piketty, Emmanuel Saez, and Gabriel Zucman, page 128.

If we were to meet the emissions reduction targets set out for 2030 in the Paris Agreement in a fair and equitable way, the top 10% of people in the US would need to reduce their carbon footprints by 87%, and the middle 40% would need to reduce their carbon footprints by 54%. The lower 50% of the US population could actually increase their carbon footprints by 3% while being consistent with the Paris Agreement – if, that is, the upper 50% actually carried their fair share of the changes needed.

The story is much the same in France, with dramatic per capita emissions reductions needed from the top 50%.

For India and China, as shown below, the picture is significantly different.

Per capita emissions reduction requirements, India & China, from the World Inequality Report 2022, by Lucas Chancel (lead author), Thomas Piketty, Emmanuel Saez, and Gabriel Zucman, page 129.

In both India and China, the upper 10% would need to dramatically reduce their carbon footprints to be consistent with the Paris Agreement. However, both the middle 40% and the lower 50% in those countries could dramatically increase their carbon footprints in the next eight years, if the Paris Agreement targets were not only to be met, but met in an equitable way.

Imagine for a moment that the small minority of people with large carbon footprints, both globally and within countries, made a serious effort at reducing those footprints. What aspect of their lifestyles would be the most logical place to start?

Here, after what might have seemed like a long detour, we get back to the airport.

Panorama from inside Edinburgh air traffic control room, Oct 2013, photo by NATS – UK Air Traffic Control, licensed via CC BY-NC-ND 2.0, accessed on Flickr.

A high-level view

In spite of steep increases in aviation emissions in recent decades, direct emissions from aviation are still a small slice of overall global warming emissions. At the same time, among the world’s affluent classes, per capita emissions from aviation alone are much higher than the total per capita emissions of most people in much of the world.

The explanation lies here: only a small proportion of the world’s population flies at all, and among those, another small proportion takes most of the flights, the longest flights, and the flights that incur the largest per capita carbon footprints.

Even within high-income countries, less than half the population gets on a plane in a given year, according to a recent article in Global Environmental Change.

And on a global scale, Tom Otley reported in 2020,

“The research says that the share of the world’s population travelling by air in 2018 was just 11 per cent, with at most 4 per cent taking international flights.” (Business Traveller)

Can we conclude that 11 per cent of the people have an equal share of the aviation emissions? That would be deeply misleading, because most of those 11% take just the occasional flight, while a smaller number take many flights.

As reported in the article “A few frequent flyers ‘dominate air travel’” on BBC News, here’s how a small share of flyers in selected countries keep airports busy:

“In the UK, 70% of flights are made by a wealthy 15% of the population …. [I]n the US, just 12% of people take two-thirds of flights. … Canada: 22% of the population takes 73% of flights …. The Netherlands: 8% of people takes 42% of flights. … China: 5% of households takes 40% of flights. … India: 1% of households takes 45% of flights.”

But wait – there’s more! Stefan Gössling and Andreas Humpe explain in “The global scale, distribution and growth of aviation”, “The share of the fuel used by these [frequent] air travelers is likely higher, as more frequent fliers will more often travel business or first class ….”

Flying in more luxurious fashion comes at a huge environmental cost:

“The International Council on Clean Transportation (ICCT) (2014) estimates that the carbon footprint of flying business class, first class, or in a large suite is 5.3, 9.2 or 14.8 times larger than for flying in economy class.” (Gössling and Humpe)

Due to the frequency of their flights, plus the more luxurious seating accommodations often favoured by those who can afford many flights, about 10% of the most frequent fliers account for about half of all aviation emissions.

Gössling and Humpe refers to these most frequent fliers as “super emitters”, noting that “[S]uper emitters may contribute to global warming at a rate 225,000 times higher than the global poor” who have almost no carbon footprint.

To summarize: aviation accounts for a relatively small percentage of overall global warming emissions, because flying is a privilege enjoyed almost exclusively by a small percentage of the affluent classes. Yet among these classes, aviation results in a large share of personal carbon footprints, especially if flying is a regular occurrence.

Our World In Data states it starkly: “Air travel dominates a frequent traveller’s individual contribution to climate change.”

The same report adds, “The average rich person emits tonnes of CO2 from flying each year – this is equivalent to the total carbon footprint of tens or hundreds of people in many countries of the world.” (emphasis mine)

If we recall some figures from earlier in this post, those individuals in the US whose carbon footprints rank in the top 10% will need to reduce those footprints by 87%, for fair compliance with the Paris Agreement.

For most of those in the very-high-carbon-emissions bracket, a drastic reduction in flying will be a necessary, though not sufficient, lifestyle change in any future that includes climate justice.

• • •

Not so fast, frequent fliers might protest. Aren’t you overlooking the possibility, perhaps even the probability, that in the near future we will have a flourishing airline industry powered by clean electricity or clean hydrogen?

That’s too complicated a subject for a blog post that’s quite long enough already.

One recurring theme in this series has been the distinction between device-level changes and system-level changes. A speedy, safe, ocean-jumping airliner that burns no fossil fuel, if such an airliner were to exist, would be a great example of a device-level change.

I don’t expect to see such an airliner making commercially-viable trips within my lifetime. I’ll explain that skepticism in the next installment of this series on transportation.

Photo at top of page: Airbus airliners lined up at Chengdu, November 2015; photo by L.G. Liao, accessed at Wikimedia Commons.

Losing altitude

Travel as if every place matters.


In my lifetime a curious habit has taken hold among a small minority of the earth’s residents. For this elite group the ability to get to nearly anywhere else on earth within 24 hours, give or take a few, has come to be regarded as normal, as an entitlement, as damn near a necessity.

In this new relationship with geography, there are only two places that matter: the place in which I get on an airplane, and the place where I get off. Intervening places don’t matter: they are not felt, they are not smelled, they are not heard, they are usually not even seen unless the sky is exceptionally clear and a remote landscape scrolls far beneath my window.

To be sure, this ability to ignore intervening distances has developed over a few centuries, but it is still a recent phenomenon. Through nearly all of human evolution, when we traveled we felt every hill and bump and wave along our journey. Even when some of us gained the status of travelling on horseback or perhaps even in a wheeled wagon, journeys were rough and not drastically faster than a human could go on foot. In going from A to B, then, we learned a lot about, and we felt some connection to, every place between A and B.

The construction of smoother roads made some difference, and the explosive development of railroads in the 19th century made a lot of difference. As speeds climbed far beyond any velocity in previous human experience, the journey also became smoother. It was still possible to have a relatively close look at the passing landscape, but it was on the other side of a window, and viewing it was optional. In the twentieth century societies where car culture took over, this strong separation of traveller from landscape became a fact of daily life.

It was air travel, though, that made a complete separation of person from landscape a possibility. At first it was a rare, novel, exciting sensation experienced by just a few. Even today most of the people in the world have never flown,1 and only a tiny minority fly regularly.2 But for the global elite – which includes a substantial part of the population of affluent countries – most travel kilometers are traversed in high-altitude, high-velocity cocoons that make all the earth, save two points, mere fly-over country.

In the next installment of this series we’ll consider the environmental impact of this strange new travel habit. In this installment I concentrate on the struggles some of us face when we ask, “Should I fly?”

We’ll start by asking: which of our journeys actually matter?

Why not? It doesn’t cost me much …

In today’s world a small elite takes multiple trips a year, turning vast energy resources into pollution, in journeys that don’t have a lot of value, even to themselves.

Is that an outrageous and unwarranted value judgement? Perhaps. But here’s how I arrive at that judgement.

Of all the long journeys made by air travellers today, how many would be made if the person had to walk, or get on a slow and risky sailing craft to cross a large body of water? How many would be made if people had to peddle a bicycle most or all of the way? How many would be made if the best option was a train topping out at 100 km and stopping frequently? How many would be made if the traveller had to drive, on a road network that took them through every city, town and village?

We can answer those questions simply by looking into our own histories. Most people made few long journeys when it took days, weeks or months for a one-way trip to their destination.

Certainly, some journeys are exceptionally important to the traveller. Someone might find it so meaningful to say goodbye to an aging parent in a distant country that they would give up months of their time to make the trip. For a few people, it is valuable to go to distant countries for purposes of trade, in spite of the cost in time and risk. For people in desperate socio-economic straits, a trip halfway around the world at great personal hardship and risk and with no guarantee of ever making a return trip, might be judged the best of their terrible options.

A small number of people would even make a few distant journeys just to “see the world” – though in the past such trips were necessarily long in time as well as in space.

But crossing an ocean just to take a short river cruise? Crossing an ocean just to visit a few museums and restaurants for a week or two? Crossing a continent just for a weekend sporting event, or to lie on a beach for several days? Most such journeys simply wouldn’t be made if they involved a week or a month of travel getting there and the same getting home. They simply aren’t that important.

Those of us in the upper half of the global privilege pyramid can make frequent long journeys because they don’t cost us much personally. Since the onset of mass air travel, our long journeys cost us almost none of our own time. There is a cost, perhaps even a significant cost, in our discretionary income, yes – but if we have discretionary income to begin with, we’re lucky enough to have money we can spend on things we don’t need.

Now, we might be aware that our long airline journeys do have costs to other people around the globe, already today and even more in the near future. We might be aware of the carbon emissions from an aircraft, and aware that the other emissions approximately double the global-warming impact of the CO2 emitted.3 We might be aware that although aviation has contributed only a small proportion of global warming pollution to date, that’s because only a small percentage of the world’s population do much or any flying. We might even be aware that if we make more than one long-haul flight per year, those flights are likely the largest contributor to our personal carbon footprint.

That awareness might make us question whether we should stop flying, completely and forever. And perhaps that thought makes us so uncomfortable that we push it away, at least long enough to get our next trip booked.

But “all or nothing” framings seldom lead to the best decision-making. Here’s my suggestion for deciding which trips are really important. Would I still choose to take a journey even if the travel time, forth and back, were weeks or months? Is it important enough that I would even seriously entertain the idea of giving up a large chunk of my own time? If the answer is “no, obviously not!” then I shouldn’t consider foisting the cost on others either – costs, that is, in the form of large amounts of carbon pollution.

Honestly grappling with those questions may not result in a complete cessation of long-distance travel, but it would result in a drastic reduction in casual continent-hopping.

What about “love miles”?

In a perceptive blog post entitled “How to Fly Less”, climate scientist Kimberly Nichols relates how the difficult barrier of “love miles” stalled her from making progress on much easier and more consequential ways of reducing the impact of her flying habit.

“Love miles” is a phrase used by George Monbiot in his 2006 book Heat. “Love miles” refers to those long distance trips, obviously of deep importance to most people, made to visit family members or dear friends across continents or across oceans.

For Kimberly Nichols, a US resident who moved to Sweden for a university position, the thought of giving up her once-a-year visits to her parents in California was too much to bear. Worse, that blocked her from thinking about all the flights she could do without. But when she was prompted to start with the easy issues, not the hard issues, she soon found she could eliminate most of her flying, while deeply appreciating overland trips much closer to her current home.

Her advice is so simple that it shouldn’t even need emphasis:

“Identify which flights you don’t need; cut those first. A recent study of frequent flyers found the travellers themselves rated only 58 percent of their trips “‘important” or “very important.’”4

In the category of “good advice which I myself didn’t follow”, she admonishes “Don’t move really far away from people you love!” Perhaps that sounds trite. But until the last few generations, people needed a very compelling reason to move a great distance away from family, and if they did, they had no expectation of having routine or annual visits with the family members they had left – travel time commitments were too large.

As for long-distance vacations – is the grass always greener on the other side of the world? What about all the great destinations much closer to home that you have only glimpsed from the window of a plane, if at all?

It is often said that travel opens people’s minds, that it broadens their perspectives. Ideally, yes. But I’m not convinced that the age of mass airline tourism has made people generally wiser, let alone happier or more content. What it has done, is given a small subset of the globe’s affluent classes a barely skin-deep acquaintance with dozens or scores of places and their inhabitants. And that, at great but unequally distributed cost to our shared environment.

Stratospheric heights, and a steep price

For now and for the near future, most of the life-altering and life-threatening costs of the climate crisis are being paid by those who have contributed the least to carbon emissions. The people who pay the biggest price don’t live in the tiny proportion of the globe represented by ski resorts, beach resorts, or the capitals of “civilization” such as London, Paris, Los Angeles, New York or Shanghai. Those who pay the highest price live in the rest of the globe, fly-over country for the frequent flyers.

The Global Inequality Report gives a particularly stark example of carbon emissions inequality: space tourism.

“An 11-minute flight [into space] emits no fewer than 75 tonnes of carbon per passenger once indirect emissions are taken into account (and more likely, in the 250-1,000 tonnes range). At the other end of the distribution, about one billion individuals emit less than one tonne per person per year. Over their lifetime, this group of one billion individuals does not emit more than 75 tonnes of carbon per person. It therefore takes a few minutes in space travel to emit at least as much carbon as an individual from the bottom billion will emit in her entire lifetime.5

But how stark is the carbon emissions inequality for the more “average” frequent flier? We’ll take a more detailed look at inequality in the skies in the next installment of this series.

In the interest of honest disclosure, here is a brief summary of my own relationship to flying. I have never been a frequent flyer, and I’ve only taken two trips across an ocean. For most of my adult life I took most of my vacations by bike, but that often involved a plane trip for at least one leg of the journey. After becoming aware of the climate crisis and the role of aviation in that crisis, I consciously decided to minimize flying. In the past 10 years I have taken one one-way flight from Minneapolis to Toronto, and one one-way flight from London to Toronto. I have also become painfully aware of the terribly limited opportunities for train travel in North America as compared to train travel in Europe. Nevertheless, there are more great places in North America that can be reached by train than I will ever have time to visit.


“Less than 20 percent of the world’s population has ever taken a single flight” – former Boeing CEO David Muilenburg, cited in “The global scale, distribution and growth of aviation”,  by Stefan Gössling and Andreas Humpe, Global Environmental Change, November 2020.

“National surveys indicate that in high income countries, between 53% and 65% of the population will not fly in a given year.” – Gössling and Humpe, Global Environmental Change, November 2020.

To cite one source, a Yale Environment 360 article says this: “Though lasting for only a short time, these ‘contrails’ [condensation trails] have a daily impact on atmospheric temperatures that is greater than that from the accumulated carbon emissions from all aircraft since the Wright Brothers first took to the skies more than a century ago.” And further: “Civilian aircraft currently emit about 2 percent of anthropogenic CO2 and, once the effects of contrails are included, cause 5 percent of warming. But there is a key difference. While CO2 accumulates in the atmosphere and has a long-lasting effect, contrails last a matter of hours at most, and their warming impact is temporary.” (How Airplane Contrails Are Helping Make the Planet Warmer, by Fred Pierce, July 18, 2019.) If we rapidly shrink the aviation industry, the effects of contrails will quickly dwindle too. But if the airline industry continues to grow, contrails will help push the climate towards already close tipping points.

Data cited from “Can we fly less? Evaluating the ‘necessity’ of air travel”, Journal of Air Transport Management, October 2019.

5 World Inequality Report 2022, Coordinated by Lucas Chancel (Lead author), Thomas Piketty, Emmanuel Saez, Gabriel Zucman, page 134; emphasis mine.

Image at top of page: Airplane landing at Zurich airport, June 2018, photo by Michael Kuhn, accessed at Wikimedia Commons; cropped and resized.

Right-sizing delivery vehicles

Cargo bikes can replace far heavier vehicles for a substantial share of urban deliveries. But should you buy a cargo bike for personal use? Probably not.


In North America we think in extreme terms when it comes to last-mile freight delivery. Whether the cargo is a couple of bags of groceries, a small parcel, a large-screen TV or a small load of lumber, we routinely dispatch vehicles with hundreds-of-horsepower engines.

This practice has never made sense, and there have always been niche markets where some products and parcels have been delivered by bicycle couriers instead of truck drivers. Historically, cargo bikes were in wide use in many cities in the decades before cars and trucks cemented their death grip on most urban traffic lanes.1

Today the cargo bike industry is growing rapidly due to several factors. Many cities are establishing zero-emissions zones. The cost of gasoline and diesel fuel has risen rapidly. Congested traffic means powerful expensive vehicles typically travel at bicycle-speed or slower in downtown areas. Last but not least, the development of low-cost, lightweight electric motors for small vehicles dramatically boosts the freight delivery capacity of e-assist bikes even in hilly cities.

Thousands of companies, from sole-proprietor outfits to multinational corporations, are now integrating cargo bikes into their operations. At the same time there is an explosion of new micro-powered vehicle designs on the market.2

Where a diesel-powered urban delivery van will have an engine with hundreds of horsepower, an electric-assist bike in the EU is limited to a motor of 250 W, or about one-third of one horsepower.3 Yet that small electric motor is enough to help a cyclist make typical parcel deliveries in many urban areas at a faster rate than the diesel van can manage.

A great many other deliveries are made, not by companies, but simply by individuals bringing their own purchases home from stores. In this category, too, North Americans tend to believe an SUV or pick-up truck is the obvious tool for the job. But in many car-clogged cities and suburbs a bicycle, whether electric-assist or not, is a much more appropriate tool for carrying purchases home from the store.

Image from, licensed via CC0 Public Domain.

This is an example of a change that can be made at the device level, rapidly, without waiting for system-level changes that will take a good bit longer. When it comes to reducing carbon emissions and reducing overall energy use, the rapid introduction and promotion of cargo bikes as delivery vehicles is an obvious place to make quick progress.

At the same time, the adoption of more appropriate delivery devices will become much more widespread if we simultaneously work on system-level changes. These changes can include establishing more and larger urban zero-emission zones; lowering speed limits for heavy vehicles (cars and trucks) on city streets; and rapid establishment of safe travel lanes for bikes throughout urban areas.

The environmental impact of deliveries

The exponential growth in online shopping over the past twenty years has also led to “the constant rise in the use of light commercial vehicles, despite every effort by cities and regulators to reduce congestion and transport emissions.”4

Last-mile urban delivery, notes the New York Times, “is the most expensive, least efficient and most impactful part of the supply chain.”5

Typical urban parcel delivery trucks have an outsize impact:

“Claudia Adriazola-Steil, acting director of the Urban Mobility Program at the World Resources Institute’s Ross Center for Sustainable Cities, said freight represented 15 percent of the vehicles on the roads in urban areas, but occupied 40 percent of the space. ‘They also emit 50 percent of greenhouse gas emissions and account for 25 percent of fatalities ….’”6

Since vehicle speeds in downtown areas are typically slow, most parcels are not very heavy, and the ability to travel in lanes narrower than a typical truck is a great advantage, a substantial portion of this last-mile delivery can be done by cargo bikes.

Both Fed-Ex and UPS are now building out electric-assist cargo bike fleets in many Western European cities. UPS has also announced plans to test electric-assist cycles in Manhattan.7

How much of the last-mile delivery business can be filled by cargo bikes? A report by the Rapid Transition Alliance says that “In London, it’s estimated that up to 14% of small van journeys in the most congested parts of the city could be made with cargo bikes.”8 City Changer Cargo Bike estimates that in Europe “up to 50% of urban delivery and service trips could be replaced by cargo bikes….”9

It’s important to note that big corporations aren’t the only, or even the major, players in this movement. Small businesses of every sort – ice-cream vendors, bakeries, self-employed carpenters and plumbers, corner grocery stores – are also turning to cargo bikes. The City Changer Cargo Bike report says that “It is important to highlight that the jobs created by cargo bikes are mainly created by Small and Medium-size Enterprises.”10

For small companies or large, the low cost of cargo bikes compared to delivery vans is a compelling factor. The New York Times cites estimates that “financial benefits to businesses range from 70-90% cost savings compared to reliance on delivery vans.”11

The cost savings come not only from the low initial purchase price and low operating costs of cargo bikes, but also from the fact that “electric cargo bikes delivered goods 60 percent faster than vans did in urban centers, and that an electric cargo bike dropped off 10 parcels an hour compared with a van’s six.”12

It’s no wonder the cargo bike industry is experiencing rapid growth. Kevin Mayne of Cycling Industries Europe says sales are growing at 60% per year across the European Union and could reach 2 million cargo bike sales per year by 2030.

Delivery vans in European cities are typically powered by diesel. Replacing a few hundred thousand diesel delivery vans with e-cargo bikes will obviously have a significant positive impact on both urban air quality and carbon emissions.

But what if diesel delivery vans are switched instead to similar-sized electric delivery vans? Does that make the urban delivery business environmentally benign?

Far from it. Electric delivery vans are just as heavy as their diesel counterparts. That means they cause just as much wear and tear on city streets, they pose just as much collision danger to cyclists, pedestrians, and people in smaller vehicles, and they produce just as much toxic tire and brake dust.

Finally, there is the significant impact of mining and manufacturing all that vehicle weight, in terms of upfront carbon emissions and many other environmental ills. There are environmental costs in manufacturing cargo bikes too, of course. But whereas a delivery van represents a large amount of weight for a much smaller delivery payload, a cargo bike is a small amount of weight for a relatively large payload.

In a listing by Merchants Fleet of the “5 Best Electric Cargo Vans for Professionals”, all the vehicles have an empty-weight a good bit higher than the maximum weight of cargo they can carry. (The ratios of empty vehicle weight to maximum cargo weight range from about 1.5 to 3.5.)13

By contrast, a recent list of recommended electric-assist cargo bikes shows that the ratios are flipped: all of these vehicles can carry a lot more cargo than the vehicles themselves weigh, with most in the 4 – 5 times cargo-weight-to-empty-vehicle-weight range.14

One other factor is particularly worthy of note. The lithium which is a key ingredient of current electric-vehicle batteries is difficult, perhaps impossible, to mine and refine in an environmentally benign way. Lithium batteries will be in extremely high demand if we are to “electrify everything” while also ramping up storage of renewably, intermittently generated electricity. Given these constraints, shouldn’t we take care to use lithium batteries in the most efficient ways?

Let’s look at two contrasting examples. An Urban Arrow Cargo bike has a load capacity of 249 kg (550 lbs), and a battery weight of 2.6 kg (5.7 lbs)15 – a payload-to-battery-weight ratio of about 44.

The Arrival H3L3 electric van has a load capacity of 1484 kg (3272 lbs) and its battery is rated at 111 kWh.16 If we assume, generously, that the Arrival’s battery weighs roughly the same as Tesla’s 100 kWh battery, then the battery weight is 625 kg (1377 lbs).17 The Arrival then has a payload-to-battery-weight ratio of about 2.4.

In this set of examples, the e-cargo bike has a payload-to-battery-weight ratio almost 20 times as high as the ratio for the e-cargo van.

Clearly, this ratio is just one of many factors to consider. The typical e-cargo van can carry far heavier loads, at much higher speeds, and with a longer range between charges, than e-cargo bike can manage. But for millions of urban last-mile deliveries, these theoretical advantages of e-cargo vans are of little or no practical value. In congested urban areas where travel speeds are low, daily routes are short, and for deliveries in the 1 – 200 kg weight range, the e-cargo bike can be a perfectly adequate device with a small fraction of the financial and environmental costs of e-cargo vans.

On Dundas Street, Toronto, 2018.

Cargo bikes, or just bikes that carry cargo?

A rapid rollout of cargo bikes in relatively dense urban areas is an obvious step towards sustainability. But should you buy a cargo bike for personal use?

Probably not, in my opinion – though there will be many exceptions. Here is why I think cargo bikes are overkill for an average person.

Most importantly, the bikes most of us have been familiar with for decades are already a very good device for carrying small amounts of cargo, particularly with simple add-ons such as a rack and/or front baskets.

A speed fetish was long promoted by many bike retailers, according to which a “real bike” was as light as possible and was ridden by a MAMIL – Middle-Aged Male In Lycra – who carried nothing heavier than a credit car. Cargo bikes can represent a chance for retailers to swing the pendulum to the opposite extreme, promoting the new category as a necessity for anyone who might want to carry more than a loaf of bread.

In spite of bike-industry biases, countless people have always used their bikes – any bikes – in routine shopping tasks. And with the addition of a sturdy cargo rack and a set of saddlebags, aka panniers, a standard-form bike can easily carry 25 kg or more of groceries. Or hardware, or gardening supplies, or a laptop computer and set of office clothes, or a stack of university textbooks.

The bikes now designed and marketed as cargo bikes can typically carry several times as much weight, to be sure. But how often do you need that capability, and is it worth the considerable downside that comes with cargo bikes?

Cargo bikes are typically a good bit longer and a lot heavier than standard-model bikes. That makes them more complicated to store. You probably won’t be able to carry a big cargo bike up stairs to an apartment, and you might not sleep well if you have to leave an expensive cargo bike locked on the street.

If you only occasionally need to carry larger amounts of cargo, you’re likely to get tired of riding a needlessly heavy and bulky bike the rest of the time.

If you occasionally carry your bike on a bus, train, or on a rack behind a car, a long cargo bike may be difficult or impossible to transport the same way.

Depending on the form factor, you may find a cargo bike doesn’t handle well in spite of its large weight capacity. Long-tail cargo bikes, with an extra-long rack over the rear wheel, can carry a lot of weight when that weight is distributed evenly on both sides of the rack. But if the load is a single heavy object, you may find it difficult to strap the load on the top of the rear rack so that it doesn’t topple bike and rider to one side or the other. (As one who has tried to load a big reclining chair onto a rear rack and ride down the road, I can attest that it’s harder than it sounds.)

Long-tail cargo bike. Photo by Richard Masoner on, licensed via Creative Commons 2.0.


Box-style cargo bike in Lublin, Poland. Photo by Porozumienie Rowerowe, “Community cargo rental”, via Wikimedia Commons.

The large box style cargo bikes known as bakfiets solve those balance problems, but are typically heavy, long, and thus difficult to store. They can be ideal for moving around a city with children, though many parents will not feel comfortable doing so unless there is a great network of safe streets and protected bike lanes.

For people who have a secure storage space such as a garage, and the budget to own more than one bike, and for whom it will often be helpful to be able to carry loads of 100 kg or more by bike – a cargo bike might be a great buy. Or, perhaps a cargo trailer will be more practical, since it can add great cargo-carrying ability to an ordinary bike on an as-needed basis.18

Ideally, though, every urban area will soon have a good range of cargo-bike businesses, and some of those businesses will rent or loan cargo bikes to the rest of us who just occasionally need that extra capacity.

• • •

In the next installment of this series on transportation, we’ll look at a sector in which no significant device-level fixes are on the horizon.


See A Visual History of the Cargo Bike, from Mechanic Cycling, Haverford, Pennsylvania.

For an overview of a wide range of new cargo bikes and urban delivery initiatives, see the annual magazine of the International Cargo Bike Festival.

In North America wattage restrictions vary but many jurisdictions allow e-assist bikes with motors up to 750 Watt output.

Stakeholder’s Guide: Expanding the reach of cargo bikes in Europe, published by CycleLogistics and City Changer Cargo Bike, 2022.

“A Bicycle Built for Transporting Cargo Takes Off,” by Tanya Mohn, New York Times, June 29, 2022.

Tanya Mohn, New York Times, June 29, 2022.

Tanya Mohn, New York Times, June 29, 2022.

Large-tired and tested: how Europe’s cargo bike roll-out is delivering, 18 August 2021.

Stakeholder’s Guide: Expanding the reach of cargo bikes in Europe, 2022.

10 Stakeholder’s Guide: Expanding the reach of cargo bikes in Europe, 2022.

11 Tanya Mohn, New York Times, June 29, 2022.

12 Tanya Mohn, New York Times, June 29, 2022.

13 5 Best Electric Cargo Vans for Professionals”, Merchants Fleet.

14 10 Best Electric Cargo Bikes for Families and Businesses in 2022,” BikeExchange, Sept 1, 2022.

15 10 Best Electric Cargo Bikes for Families and Businesses in 2022,” BikeExchange, Sept 1, 2022.

16 5 Best Electric Cargo Vans for Professionals”, Merchants Fleet.

17 How much do Tesla’s batteries weigh?”, The Motor Digest, Nov 27, 2021.

18 One example is the Bikes At Work lineup. I have used their 96” long trailer for about 15 years to haul lumber, slabs of granite, voluminous bags of compost and many other loads that would have been awkward or impossible to move with most cargo bikes.

Photo at top of page: “Eco-friendly delivery with DHL in London: a quadracycle in action,” by Deutsche Post DHL on, Creative Commons 2.0 license.

All the king’s horses


When was the last time one of your relatives bought so many victuals they needed a team of a hundred horses to haul the load back from the market?

Perhaps it was that time your great uncle Napoleon was preparing for his not-so-great trip to Moscow.

Or perhaps your great great great uncle Christopher needed a long team of horses to move his groceries before he got in a boat to try to sail to India. Or your extra-extra-great grandpa Richard I, who really bought in bulk before his trip to the Holy Land in 1191.

More likely, though, if you live in North America, somebody from your family needed a team of hundreds of horses to bring home groceries in the past 24 hours – even if they were only picking up a carton of milk or a bag of cheese puffs.

“Need” might not be exactly the right word – but they used a team of hundreds of horses nonetheless, in the sense that they fired up the same hundreds-of-horsepower engine that they use for nearly every local trip no matter how light the cargo.

This grotesque mismatch between the task at hand and the tools we use for that task, have played a large role in pushing us deep into a climate crisis. At the same time, this mismatch can point us to one of the easiest, least painful ways we can move toward true sustainability.

When we look at our dominant car culture, we can consider it from a system standpoint or a device standpoint. On a system level, we have constructed a society in which homes are far from schools, from workplaces, from stores and from entertainment. We have built wide roads and streets that facilitate, at least potentially, high speeds between these newly distant sites. We have devoted most urban public space to huge heavy vehicles that make roads and streets unsafe for pedestrians and cyclists. It took decades to build this environmental nightmare and it will take decades to fix it, even if we run out of cheap energy somewhere close to the beginning of the process.

The previous installment in this series looked at transportation on a systems level, with a call to change lifestyles so that we don’t need to, and we don’t imagine we need to, travel many thousands of kilometres every year. This post takes a narrower focus.

Strictly at the device level, some of the vehicles we use are reasonably appropriate for their typical usage, while many others are beyond absurd.

At the beginning of the 1970s, my summer job was working on a highway construction crew. As an impressionable teenager I was suitably awed when an older man, who worked as a dump-truck driver, showed me his new sports car and told me how powerful its engine was.

I don’t remember the number of horsepower it boasted, but I do remember my Dad’s reaction.

“That is really ridiculous!” my dad exclaimed. “The engine in his car is just as powerful as the engines in all of our gravel trucks!”

My dad was no opponent of car culture – he had a successful career building highways throughout half a dozen US states. But after growing up on a Minnesota farm, driving tractors and grain trucks since before he was ten years old, he had an instinctive understanding of the capabilities and usefulness of different engines.

He understood that for steady work hauling 10 or 15 ton loads, often along hilly highways at speeds up to the speed limit, a 300-hp engine was appropriate. But for hauling one young man along roads with the same speed limits, a 300-hp engine was ludicrous.

As it was in the 1970s, so it is today. Some of the devices we use for transportation – those used to haul heavy freight – have a reasonably powered engine for their assigned task. It will be a difficult challenge to convert their engines from fossil fuels. (Simply moving a lot less freight in the first place is one answer, of course, but that’s a system-level topic beyond the scope of this essay.)

But a greater number of the vehicles on our roads have power systems vastly beyond those needed, even if we accept for the moment that the “need” is to carry a person tens of thousands of kilometres along roads every year, sometimes at speeds of roughly 100 km/hr. There would be no technical hurdles in accomplishing that same task with power systems using a small fraction of the energy. The challenge would be cultural, not technical.

Going nowhere fast. Newly manufactured light trucks awaiting distribution and sale, parked outside GM Canada building in Oshawa, Ontario, Aug 28 2022.

“Get just enough horsepower to do the job.”

That 1970s truck driver whose muscle car impressed the teenage me and perplexed my practical dad? It turns out that by driving a car with the power of a dump truck, he was an avatar of the American future. Today, it is commonplace for Americans to make their daily rounds in cars with the power of dump trucks.

And how much power is that? In 2010, Brian Lindgren, a marketing director for Kenworth Trucks, offered prospective truck buyers this advice:

“One of the big mistakes many people make with dump truck engines is they spec too much power, says Lindgren. ‘You should get just enough horsepower to do the job. Generally, 350 to 400 horsepower is plenty for most applications. Extra horsepower just uses more fuel, puts more strain on the rest of the drivetrain, and adds cost up front.’”

Other trucking-industry publications make similar points: an appropriate horsepower range is somewhere between 300 and 600 horsepower, with the high numbers corresponding to semi-trailer tractors and “Super Dump” trucks carrying highway-legal payloads up to 26 tons.2, 3

This is the kind of advice that makes sense to practical business people who want to earn a profit from their vehicle. For that purpose, there’s no point in forking out a lot of extra cash upfront, and extra cash at every fuel re-fill, for an engine with horsepower far in excess of what’s needed.

Those practical considerations don’t count for much with the typical North American car buyer. The typical cargo is small – just one, and occasionally two or three, warm bodies weighing from 150 – 300 pounds each. But apparently the weight of desire for status, and the weight of drivers’ insecurity, has been on a decades-long climb – at least if we go by the size and horsepower rating of the vehicles they choose to move around in.

This chart by Kevin Drum illustrates the trend: 

By Kevin Drum, from his article “Raw Data: Horsepower of New Vehicles in the US”, on Jabberwocking.

As recently as 1980, when most buyers of pick-up trucks had a day-to-day practical need for such a vehicle, engines were only slightly more powerful than the engines in typical cars. Today pick-up truck horsepower ratings have nearly tripled, while engines in cars have more than doubled.

What that graph doesn’t show is that pick-up trucks have become a far larger share of the automotive market in recent years, as if an epidemic of cattle-ranching or lumberjacking has taken hold in every North American suburb.

A question arises: are today’s four-door pick-up trucks merely oversize cars in disguise, or are today’s oversize SUVs actually trucks in disguise?

Whatever. The US Department of Energy lumps them together with other cars as “light-duty” vehicles, and finds that in this category:

“Preliminary data for model year 2021 show that the average horsepower (hp) reached 252, an increase of more than 6 hp over the 2020 model year.”

If the average new personal passenger vehicle has a 252 horsepower engine, then something like half of those vehicles have a good bit more power – right up into the dump-truck or semi-trailer tractor range.

Car & Driver reported in 2021 that “Finding an SUV with about 400 horsepower is relatively easy these days. That number just doesn’t impress like it once did.”

These days if your personal vehicle has only as much power as an ordinary dump truck, you’re not making much of a statement. But don’t worry – if you’ve got the cash or the credit, you can buy a vehicle with as much or more power as a big, big, big dump truck. Car & Driver lists 15 SUVs and crossover vehicles with power ratings from just under 600 hp to more than 700 hp.

Costs, benefits, and opportunities

What’s the problem, defenders of superpowered cars might ask? After all, just looking at horsepower is an oversimplification that might give the wrong impression. The horsepower rating of passenger vehicles nearly doubled in the period 1989 to 2019, and vehicle weight increased by 24%, but it’s not as if fuel economy has taken a big hit. In fact, average fuel economy improved modestly.

And one ultra-important measure of performance improved dramatically in spite of the extra weight: “acceleration increased (i.e., 0-60 mph times dropped) by 37%.” Car & Driver notes that the most powerful SUV on its list “can get to 60 mph in just 3.6 seconds.”

Just think of all the time that saves a rushed commuter! Between the time a driver leaves a red light and catches up to the snarl of traffic behind the next light, he might save two or three seconds. Between the time he turns onto a freeway on-ramp and the time he reaches the maximum speed that won’t risk an expensive speeding ticket, he might save several seconds, compared to driving with the woefully underpowered vehicles of the 1970s or 1980s. In a long commute with many starts and stops, those precious seconds saved through superior acceleration could add up to a minute or more.

And it’s not as if that massive engine is working hard and really sucking down fuel all the time. Once the vehicle is at cruising speed, power usage is way down and fuel usage is (relatively) lower too.

All true. And yet …. Manufacturing cars that weigh a lot more, and manufacturing millions of bigger engines to propel those heavier vehicles, also has a correspondingly larger carbon footprint. All cars – be they subcompacts or supersize SUVs, gas, diesel, or electric – have resulted in a lot of carbon emissions before the impatient driver even revs the engine for the first time. The more materials used to make that vehicle, the bigger the upfront carbon emissions.

If or when we switch to electric vehicles, those issues of weight and power don’t magically go away. The larger and heavier a vehicle is, the larger the battery needs to be. The larger the batteries, the more scarce minerals we need to mine and refine, and the more high-speed chargers we’ll need to get these big batteries recharged in a reasonable length of time.

We’re in a period when we have a desperate need to curtail fossil fuel combustion, but during which we have only a small fraction of the clean renewable energy installations that would be needed to power an industrial society like ours. It would be folly to continue building bulky, heavy, massively overpowered vehicles to move one or two passengers along roads, and therefore devoting a huge share of our still scarce clean power supplies to building and/or operating that oversized vehicle fleet.

On a system level this is a long-term and complicated problem; we need to dramatically reduce the need to travel far and fast just to get to work or school on a daily basis. But on a device level it is simple. We could build cars that carry one or two people, and occasionally the smaller families that are typical today, plus a typical haul of groceries, at speeds up to but not a lot faster than highway speed limits. We could employ the latest automotive engineering improvements, not to move ever heavier vehicles ever faster, but to power lighter vehicles with the best energy efficiency currently achievable.

As we try to “electrify everything”, with clean renewable energy installations that are still nowhere near adequate for the transition, we should ensure that cars and “light trucks” make the smallest possible demands on our electricity network.

Technically that’s easy but culturally it’s hard. We have an auto industry, after all, whose key to bigger profits has been to persuade people their cars are never big enough or powerful enough. And we have millions of traffic-bound motorists convinced that it really matters whether their cars can go from 0 – 60 in 10 seconds or 5 seconds.

• • •

In the next installment in this series, we’ll look at a combined system-and-device level problem. In the cities where most people live, a big share of vehicle trips don’t actually require use of a car or a truck. How can we change the mode share of urban trips quickly, using existing technologies, and what kind of devices are most appropriate?

Illustration at top of post: detail from Market Economy, composed by author from Creative Commons-licensed images – Horses from image at; wagon and driver from photo by Milo Bost0ck, from Wikimedia Commons; Wal-Mart Supercentre, N Lexington-Springmill Rd, Ontario, OH, photo by Kirk Allen, from Wikimedia Commons; milk carton illustration by Paul Robinson, from Wikimedia Commons; random number background created in Excel.



“How much horsepower does a semi-truck have?” on Trucker’s Corner, August 6, 2019.

“Dump Trucks 101: how to choose the right one”, on

US Office of Energy Efficiency and Renewable Energy Fact of the Week, Feb 7, 2022.

Car & Driver, “Most Powerful Crossovers and SUVs on Sale Today,” Nov 13, 2021.

6 Personal Transportation Factsheet, University of Michigan.

Car & Driver, Nov 13, 2021.

“In 1977, the U.S. average vehicle occupancy was 1.87 persons per vehicle. In 2018, average car occupancy was 1.5 persons per vehicle.” – Personal Transportation Factsheet, University of Michigan.

Hypermobility hits the wall

Also published on Resilience

Imagine a luxurious civilization in which every person has a motorized travel allowance of 4000 kilometers every year, with unused amounts one year carried forward to allow more distant journeys, perhaps every few years. Imagine also that non-motorized travel is not tallied in this quota, so that a person who makes their daily rounds on foot or bicycle can use all or most of their motorized travel quota for those occasional longer journeys.

It’s true that a motorized travel quota of 4000 km per year would seem a mite restrictive to most people in wealthy industrial countries. But such a travel allowance would have been beyond the dreams of all of humanity up until the past two centuries. And such a travel allowance would also mean a significant increase in mobility for a large share of the global population today.

Still, as long as we “electrify everything” why should we even think about reducing the amount of travel?

Australian scholar Patrick Moriarty floats the idea of a motorized travel allowance of 4000 km per year1, based on a recognition that the environmental harms of high-speed and motorized mobility go far beyond the climate-destabilizing emissions that come from internal combustion cars, trucks, trains, planes and ships.

In several articles and a recent book2 Moriarty and his frequent co-author Damon Honnery provide perspective on what Moriarty refers to as “hypermobility”. The number of passenger kilometers per person per year exploded by a factor of 240 between 1900 and 2018.3

“This overall 240-fold rise is extraordinary, considering the less than five-fold global population increase over the same period. It is even about 30 times the growth in real global GDP.”4

The global average for motorized travel is now about 6,300 km per person per year. At the extremes, however, US residents average over 30,000 km per person per year, while in some countries the average is only a few hundred km per person per year.5

Could the high degree of mobility now standard in the US be extended to the whole world’s population? Not likely. Moriarty calculates that if each person in the world were to travel 30,000 km per year in motorized transport, “world transport energy levels alone would be about 668 EJ, greater than global total commercial energy use of 576 EJ for 2018.”6

Increasing mobility services for the world’s poorest people, while decreasing motorized mobility for the wealthiest, is not only an environmental necessity, it is also a matter of equity. As part of examining those issues, we need to ask this simple question: what good is transportation?

We’re moving, but are we getting anywhere?

Moriarty calls attention to an issue that is so basic it is often overlooked: “What people really want is not mobility itself, but access—to workplaces, schools, shops, friends and family, entertainment etc.”7

Sometimes more mobility also means more access – for example, a person acquires a car, and that means many more workplaces, schools, and shopping opportunities are within a practical daily travel distance. But other times more mobility results in little or no gain in access. As two-car households became the norm in many rural areas, grocery stores and even schools consolidated in bigger towns, so that a car trip became necessary for access to things that used to be a walkable distance away in each small town.

Sometimes more mobility for some people means less accessibility for others. When expressways cut through urban neighbourhoods, lower-income residents of those areas may face long hikes across noisy and polluted overpasses just to get to school or a store.8

In the sprawling suburbs of North American cities, people typically drive much farther to get to work every day than their parents or grandparents did 25 or 50 years ago. But to what end? If you can now travel 50, or 70, or 100 km/hr on your commute, but the drive still takes an hour because you go so much farther, what have you gained?

Moriarty asks us to consider to what extent the explosion in mobility – hypermobility – has actually improved the quality of life even for those privileged enough to participate:

“Personal travel levels in wealthy OECD countries are several times higher than in 1950, yet people then did not regard themselves as ‘travel deprived’.”9

While the benefits of hypermobility are unclear, the costs are crushing and unsustainable.

Death rides along

Motorized transportation always comes with environmental costs. These costs are especially high when each individual travels in their own motorized carriage. Only a fraction of these environmental costs go away when a car or truck fueled by internal combustion is traded for an equivalent vehicle powered by electricity.

Many researchers have cited the high upfront carbon emissions involved in building a car or truck. Before the vehicle is delivered to a customer, a lot of carbon dioxide has been emitted in the mining and refining of the ores, the transportation of materials and parts, and the assembly. For currently produced electric cars and trucks, the upfront carbon emissions are typically even higher than the upfront emissions from an equivalent combustion vehicle. It will be a long time, if ever, before that manufacturing and transport chain runs on clean energy sources. In the meantime every new electric car signifies a big burst of carbon already emitted to the atmosphere.

If only the damage stopped there. But building and maintaining roads, bridges and parking lots is also a carbon-emissions intensive activity, with additional negative impacts on biodiversity and watershed drainage.  And though an electric vehicle has no tailpipe emissions, that doesn’t mean that electric driving is pollution-free:

“[N]on-exhaust emissions of fine particular matter from tire wear is actually greater than for equivalent conventional vehicles, because EVs are heavier than their conventionally fueled counterparts.”10

Finally, there is the direct toll from the inevitable, predictable “accidents” that occur when multi-tonne objects hurtle along roads at high speeds:

“In 2018, some 1.35 million people were killed on the world’s roads, with millions more injured, many seriously. Paradoxically, most of the casualties occur in low vehicle ownership countries, and are pedestrians and cyclists, not vehicle occupants.”11

Death reliably accompanies high-speed transportation – but the fatalities disproportionately accrue to those not privileged enough to travel.

Slowing the machine

To recap the argument: the mass production of high-speed vehicles has made possible an explosion in mobility for a privileged portion of the global population. But the energy costs of transportation increase exponentially, not linearly, with increases in speed.  Hypermobility was fueled overwhelmingly by fossil fuels, and even if we could recreate the infrastructure of hypermobility using renewable energies, the transition period would result in a burst of upfront carbon emissions which our ecosystem can ill afford. Finally, if we concentrate on ramping up renewable technologies to serve the rapacious energy demands of hypermobility, it will be more difficult and will take longer to convert all other essential energy services – for producing and distributing foods, for heating and cooling of buildings, and for distributing clean drinking water, to name a few examples – so that they can run off the same renewable electricity sources.

It is clearly possible for a society to prosper with a lot less motorized travel than our hypermobile society now regards as normal. Given the manifold environmental costs and manifest social inequality of a hypermobile society, we need to rapidly cut down not only on the use of fossil fuel in transportation, but also the total amount of motorized transportation as measured in passenger-kilometers (p-k) per person per year. This is the underpinning for Moriarty’s “tentative proposal for an average aspirational target of 4000 vehicular p-k per person per year.”12

But how to begin applying the brakes?

In an article titled “Reducing Personal Mobility for Climate Change Mitigation”, Moriarty and Honnery have examined the likely impacts of various factors on overall motorized mobility. Neither new information technology services, carpooling, or land-use planning changes are likely to result in significant reductions in travel, particularly not in the 10 – 25 year time frame that is so critical for staving off a truly catastrophic climate crisis. Large and rapid increases in the market price of fossil fuels, on the other hand, would dramatically hurt lower-income people while allowing high-income people – who consume by far the most energy per capita – to maintain their current personal habits. Thus Moriarty and Honnery conclude:

“The only equitable approach is to reduce the convenience of car travel, for example, by large travel speed reductions and by a reversal of the usual present ranking of travel modes: car, public transport, and active modes.” [emphasis mine]13

Expressed graphically, that reversal of priorities would look like this chart from Mikael Colville-Andersen’s book Copenhagenize:

From Copenhagenize, by Mikael Colville-Andersen, Island Press, 2018; reviewed here.

At the outset of the motor age, walking and cycling routes were as direct and convenient as possible. As streets were dedicated to fast, dangerous cars, walking and cycling routes started to zigzag through many detours, or they simply disappeared, while priority was given to auto routes.

To make our cities safer and healthier, while also reducing the voracious energy demands of motorized transport, we need to flip the hierarchy once more, putting active transportation first, public transit second, and cars third. That way we can improve access to essential services even as motorized mobility drops.

Within cities where most people live, I think Moriarty and Honnery are right that this change would result in a substantial reduction in overall motorized kilometers per capita, and would do so in a generally equitable manner.

Easier said than done, of course. While many European cities have made major strides in this regard, even timid moves to de-privilege cars are tough for city councils to enact in North America.

A personal travel allotment of 4,000 km per year will seem outrageously low to most North Americans, and it is hard to imagine any North American politician – at least anyone with a hope of ever being elected – saying a good word about the idea.

Yet the luxury of any high-speed travel at all is a recent phenomenon, and there is no reason to take for granted that this extravagance will last very long. We do know that we need drastic, rapid change in our energy consumption patterns if we are to avoid civilization-threatening environmental instability.

We might not find it within ourselves to voluntarily steer away from our high-speed, hypermobile way of life. But if, a few decades from now, our society is in free-fall due to rapid-fire environmental disasters, the complex infrastructure needed for widespread motorized transport may be but a faint memory.

* * *

Though I only came across Moriarty’s work a few years ago, for most of my adult life I unwittingly lived within a motorized travel allotment of 4,000 km/yr – with one major exception. More than 40 years ago, as a new resident of an urban metropolis, I realized it was a bizarre waste of horsepower to use a car simply to haul my (then) scrawny carcass along city streets. Besides, I found it healthier, cheaper, more interesting, and definitely more fun to ride a bike to work, to concerts, to stores, and nearly everywhere else I wanted to go. I was fortunate, too, to be able to choose a home close to my workplace, or change my workplace to be closer to my preferred home; throughout several decades I never needed to regularly commute by car.

But: I did get on a plane once or twice a year, and sometimes several times a year. For many years these air journeys accounted for most of my motorized transport kilometers. Later I learned that of all typical modern travel modes, air travel was the most environmentally damaging and the least sustainable.

In upcoming installments in this series I’ll look at the energy needs, both real and imagined, for personal transportation within cities; and at the impact of hyper-hypermobility as embodied in routine air travel.

Illustration at top of page courtesy of, free for personal and commercial use under CC0 public domain license.


See his brief article in Academia Letters, “A proposal for limits on vehicular passenger travel levels”, published in September 2021.

Patrick Moriarty and Damon Honnery, Switching Off: Meeting Our Energy Needs in a Constrained Future, Springer, 2022.

P. Moriarty, “Global Passenger Transport,” MDPI Encyclopedia, February 2021.

P. Moriarty, Academia Letters, “A proposal for limits on vehicular passenger travel levels”.

P. Moriarty, “Global Passenger Transport”.

P. Moriarty, “Global Passenger Transport”.

P. Moriarty, “A proposal for limits on vehicular passenger travel levels”.

For more on the trade-offs between mobility and accessibility see my article “The Mobility Maze”.

P. Moriarty, “A proposal for limits on vehicular passenger travel levels”.

10 P. Moriarty, “Global Passenger Transport”.

11 P. Moriarty, “A proposal for limits on vehicular passenger travel levels”.

12 P. Moriarty, “A proposal for limits on vehicular passenger travel levels”.

13 Patrick Moriarty and Damon Honnery, “Reducing Personal Mobility for Climate Change Mitigation”, in Handbook of Climate Change Mitigation and Adaptation, Springer, 2022, pages 2501 – 2534.


The toxic cloud called ‘Internet’

Also posted on Resilience.

The global electronics network is a sort of “bad news, good news” story in Jonathan Crary’s telling.

The bad news is that “the internet complex is the implacable engine of addiction, loneliness, false hopes, cruelty, psychosis, indebtedness, squandered life, the corrosion of memory, and social disintegration”; and that “the speed and ubiquity of digital networks maximize the incontestable priority of getting, having, coveting, resenting, envying; all of which furthers the deterioration of the world – a world operating without pause, without the possibility of renewal or recovery, choking on its heat and waste.”

The good news? The internet complex will soon collapse. 

Scorched Earth, by Jonathan Crary, published by Verso, April 2022.

Crary opens his forthcoming book Scorched Earth: Beyond the Digital Age to a Post-Capitalist World with these words: “If there is to be a livable and shared future on our planet, it will be a future offline, uncoupled from the world-destroying systems and operations of 24/7 capitalism.”

If you’re looking for a careful, thorough, let’s-consider-both-sides sort of discussion, this is not the book you want. “My goal here is not to present a nuanced theoretical analysis,”Crary writes.

Rather, he wants to jar people out of the widespread faith that because we’ve grown accustomed to the internet, and because we’ve allowed it to infiltrate nearly every hour of our lives, and because it may be hard to imagine a future without the internet, therefore the internet should and will endure.

Do some good things happen on and through the Internet? Of course – but Crary is not impressed by arguments that the internet is a liberating, empowering technology for progressive movements:

“Part of the optimistic reception of the internet was the expectation that it would be an indispensable organizing tool for non-mainstream political movements … [I]t should be remembered that broad-based radical movements and far larger mass mobilizations were achieved in the 1960s and early ’70s without any fetishization of the material means used for organizing.” (Scorched Earth, p. 11)

Likewise he comments that the anti-globalization rallies of the late 1990s happened before the pandemic of smart phones, and the huge protests against the US attack on Iraq in 2003 pre-dated the onset of so-called social media. Since then, he laments, the “stupefying” effects of Internet 2.0 have dissipated people’s energies into clicktivism, leaving less time and energy for the building of personal, in-the-flesh networks that might truly challenge the direction of capitalism.

References to material pollution are scattered throughout the brief book, but Crary focuses more of his attention on the pollution of minds, emotions and perceptions. Some parts of his critique are now shared by many, both within and outside the big tech complex. He calls attention, for example, to a pervasive erosion of self-esteem: “Each of us is demeaned by the veneration of statistics – followers, clicks, likes, hits, views, shares, dollars – that, fabricated or not, are on ongoing rebuke to one’s self-belief.” (Scorched Earth, p. 24)

Less widely understood is the immense effort put into data collection, including eye tracking, facilitated by the acquiescence of hundreds of millions of people who make their self-surveillance devices available to trackers at all times:

“We often assume that internet ‘surfing’ means the possibility of following random, uncharted visual itineraries …. From the standpoint of the bored individual, hours spent in this way may seem to be a desultory waste of time, but it is time occupied in a contemporary mode of informal work that produces value as marketable information for corporate and institutional interests. (Scorched Earth, p. 100)

The value exploited by corporate interests includes finely tuned means to convince people to buy things they don’t need, which neither they nor our ecosystems can afford.

Another section was particularly thought-provoking and sobering to me, as a nature photographer who publishes online. Crary explains that internet researchers collect reams of data on “what colors and combinations of colors and graphics are most or least eye-catching.” That information is in turn funneled back into UXD – User Experience Design – to make screen time as addictive as possible and unmediated experience of nature a fading memory:

“The ubiquity of electroluminescence has crippled our ability or even motivation to see, in any close or sustained way, the colors of physical reality. Habituation to the glare of digital displays has made our perception of color indifferent and insensitive to the delicate evanescence of living environments.” (Scorched Earth, p. 106)

Internet 2.0, in sum, turns us into willing accomplices of corporate consumerism, while undermining our self-esteem, sapping our abilities to appreciate the non-virtual world around us, and sucking up time we might otherwise devote to real community. Facebook, Twitter and their ilk have pulled off one of history’s spectacular cons – getting us to refer to their sociocidal enterprise as “social media” and getting us to believe it is “free”. 

Stockpile of mobile phones for recycling/disposal, September 2017.  Photo from Wikimedia Commons.

‘The Cloud is an ecological force’

In just 124 pages Crary bites off a lot – more, in fact, than he really tries to chew. From the outset, he portrays the internet complex as a final disastrous stage in global capitalism. He notes that “the internet’s financialization is intrinsically reliant on a house-of-cards world economy already tottering and threatened further by the plural impacts of planetary warming and infrastructure collapse.” (Scorched Earth, p. 7)

But what is the physical infrastructure of the internet complex? Crary doesn’t delve into that issue. A recently published article by Steven Gonzalez Monserrate, however, makes an illuminating companion piece to Crary’s book.

Entitled “The Cloud Is Material: Environmental Impacts of Computation and Data Storage”, Monserrate’s research is available here. MIT Press has also published a shorter article adapted from the full paper. Quotes cited here are taken from the full paper.

Monserrate’s central point is that, like a cl0ud of water molecules, “the Cloud of the digital is also relentlessly material”, and further that “the Cloud is not only material, but is also an ecological force”.

Crary refers to the capitalist industrial system, of which the internet complex is now one major component, as “choking on its heat and waste”. Monserrate helps us to quantify that heat and waste.

Discussing what data center technicians refer to as a “thermal runaway event”, Monserrate writes “The molecular frictions of digital industry … proliferate as unruly heat. … Heat is the waste production of computation, and if left unchecked, it becomes a foil to the workings of digital civilization.”

In most of the data centers that keep the Cloud afloat, he adds, “cooling accounts for greater than 40 percent of electricity usage.”

Can’t the network servers and their air conditioners be switched over to renewable energy in generally cool environments? It’s not so easy, Monserrate tells us. Because of network signal latency issues, large portions of the Cloud are located as close to financial and government centers as possible. The state of Virginia’s “data center alley,” he says, was “the site of 70 percent of the world’s internet traffic in 2019”. That degree of concentrated electricity consumption is difficult if not impossible to service without huge coal, gas or nuclear generators.

The energy demands go far beyond air conditioning:

“The data center is a Russian doll of redundancies: redundant power systems like diesel generators, redundant servers ready to take over computational processes should others become unexpectedly unavailable, and so forth. In some cases, only 6–12 percent of energy consumed is devoted to active computational processes. The remainder is allocated to cooling and maintaining chains upon chains of redundant fail-safes to prevent costly downtime.” (Monserrate, “The Cloud is Material”)

Keeping your cat videos available on demand around the world, keeping Amazon’s gazillion products available for your order at 3 a.m., keeping all of Netflix’ and Hulu’s videos ready for bingeing, and keeping this entire data stream transparent to both commercial and military surveillance – well, that results in a lot of coal and gas going up as carbon dioxide emissions.

One result: “the Cloud now has a greater carbon footprint than the airline industry.”

Like the cell phones that Apple, Google and Samsung encourage you to replace every two or three years, every physical component of the internet complex has to be mined, refined, chemically transformed, assembled, packaged and shipped, before it soon becomes outmoded. Monserrate cites a Greenpeace study estimating that “less than 16 percent of the tons of e-waste generated annually is recycled.” And that recycling is often done by the lowest-paid workforces in the world, in enterprises that don’t respect the health of the workforce or the environment.

“The refuse of the digital is ecologically transformative,” Monserrate concludes.

Life without Internet

So is the Internet destined to be but one brief blip in human history? The answer seems clear to Crary – the internet will collapse along with the industrial complex that supports it:

“The internet complex, now compounded by the Internet of Things, struggles to conceal its fatal dependence on the rapidly deteriorating built world of industrial capitalism. Contrary to all the grand proposals, there never will be significant restoration or replacement of all the now broken infrastructure elements put in place during the twentieth century.” (Scorched Earth, p. 63)

Personally I am cautious about making such firm predictions, though I don’t see how the internet will persist long in its current form. Total disappearance is just one potential outcome, however. The current internet industrial complex, as Monserrate describes, includes a vast amount of redundancy, and perhaps that will make it possible to transition to a still-useful internet with only a fraction of the energy and material throughput.

In a transformed economic system, without the built-in impulsion to sell hardware and software “upgrades” to consumers on an annual basis, and without the created “need” to have every video snippet available anywhere anytime, and without the motive to maintain a vast surveillance and behavior modification apparatus – perhaps a future civilization could benefit from many of the significant benefits of the internet without paying a soul- and ecosystem-crushing price. (On this subject, see for example the research by Kris De Decker in “How to Build a Low-Tech Internet”.)

But if we don’t redirect our global economic system, and fast, the whole toxic cloud may crash whether we like it or not. And perhaps, on balance, that will be a very good thing.

“If we’re fortunate,” Crary dares to hope, “a short-lived digital age will have been overtaken by a hybrid material culture based on both old and new ways of living and subsisting cooperatively.”

Photo at top of page: A young man burning electrical wires to recover copper at Agbogbloshie, Ghana, as another metal scrap worker arrives with more wires to be burned. September 2019. Photo by Muntaka Chasant, licensed via Creative Commons, accessed through Wikimedia Commons.

For better or worse, we adapt

Also posted on Resilience.

Affluent owners of seashore properties buy up homes a safer distance from the coast – pricing poor residents out of communities they have called home for generations. Rural residents set up agro-forestry enclaves on mountain slopes, capturing some of the increasingly unpredictable rainfall. Relatively wealthy nations build and guard fences at their borders to keep climate refugees away. Water bombers fly hundreds of sorties from lakes and reservoirs to fires raging in drought-ravaged forests.

All these climate change adaptations have been happening for years now. But among the hundreds of examples of climate change adaption one could identify, some responses simultaneously work against climate change mitigation, and many work against climate justice – they are what Morgan Phillips terms “climate change maladaptations.”

He wants environmentalists to think more clearly about adaptation strategies so that we can get on with the urgent work of what he calls great adaptations. That’s the point of his recent book Great Adaptations: In the shadow of a climate crisis. (Arkbound, Sept 2021)

When he joined The Glacier Trust in support of adaptation projects in Nepal, Phillips learned that

“Lives in the Himalayan villages I have visited are on a knife edge. Landslides, floods, glacial retreat, drought, fire, air pollution, and insect pests are haunting the future of an already fragile country; it is on the brink of being turned upside down. … I knew that climate change needed to be mitigated, but the need to adapt to it is far greater than I’d ever imagined.” (Great Adaptations (GA), page 3)

Yet in 2020 The Glacier Trust “found that only 0.82% of articles written by the UK’s five biggest environmental organisations are focused on climate change adaptation.” (GA p 197)

There are valid reasons why, historically, environmental organizations preferred to focus on climate change mitigation rather than adaptation.1 If global economic elites had put serious work into mitigation 30 years ago, instead of lip service, we might not be in a position today where climate change adaption is, and will remain for generations, an urgent task.

In choosing to focus his book on adaptation, Phillips makes it clear that mitigation remains as essential as ever. We need to begin creative and effective adaptation projects around the world, because climate-induced crises are already happening. At the same time, without urgent mitigation work – primarily through a rapid curtailment of fossil fuel use – the climate crises will become so severe that effective adaptation in many areas will be impossible.

His book is wide-ranging but clearly written and free of obfuscating jargon. It deserves a wide audience because his message is so important:

“In the same spirit in which we call for a just transition to a low-carbon society, we must also call for just adaptation to climate change. They are two sides of the same coin.” (GA p 15)

Some of the adaptations Phillips discusses are as particular as changing one farming practice on one particular landscape. Others span the globe and involve changes to the international economic order, accepted definitions of universal human rights, or both. One great adaptation – forgiveness of debt – could be an effective step towards international justice whether or not it is enacted with climate change in mind:

“Cancellation of historical and unfair debts would save countries millions of dollars every year. This money could be put to use on climate change mitigation and adaptation projects.” (GA p 14)

Migration is another obvious adaptation to the climate crisis. Current citizenship law and current property law result in a crushing burden being paid by those who typically have done the least to cause the climate crisis. To achieve justice in climate adaptation, “we all also need to be free to find refuge and a new life in a country of our choosing if we want to – or are forced to – migrate because of climate change.” (GA p 14)

In some regions permanent migration might be neither desired nor necessary, but seasonal migration may be appropriate. Phillips notes that migratory lifestyles have been freely chosen by many cultures throughout history and we should open our minds – and our legal structures – to facilitate this adaptation strategy.

It should be clear that effective and just adaptation will call into question the deepest foundations of global political economy. Phillips harbors no illusions about the scale and the difficulty of the challenge. “My feeling,” he writes “is that to have any hope of avoiding catastrophic climate change, ‘Western’ civilisation needs to be disassembled with great urgency and great care.” (GA p 149)

Citing Rupert Read, he considers the possibility of “a successor civilisation after some kind of collapse [of ‘Western’ civilisation]”. As an example of such a many-faceted response to climate crisis, Phillips discusses the “Make Rojava Green Again” movement in the region Western media refer to as Kurdistan. In his description,

“The ‘Make Rojava Green Again’ movement has strong ecological, multicultural, democratic, and feminist principles. It is based on a political system of democratic confederalism, where power is devolved to as local a level as possible ….” (GA p 167)

The Rojavan example has been inspiring to people around the world, not only because of its egalitarian and ecological principles, but also because the movement has become a decisive force in the wake of the global proxy war in Syria and the failed US occupation of Iraq. The response to this civilizational collapse has been, not an attempt to return to business as usual, but a new way of life: “‘Make Rojava Green Again’, and other ‘Phoenix’ like it, are so important because they help us to imagine different kinds of future. Rojavan’s are willing to challenge the value structures that underpin ‘Western’ civilisation.” (GA p 170)

The adaptation examples Phillips considers come from rich countries, poor countries, megacities, and sparsely populated rural areas. They are equally diverse in their effects: some adaptations reinforce inequalities; some adaptations fuel additional global heating; some adaptations help mitigate climate change while supporting global justice; many adaptations are neither wholly positive nor wholly negative.

But simply ignoring adaptation is a very risky strategy, “especially if the responsibility for adaptation is left in the hands of central Governments, large NGOs, and big businesses that are, by nature, resistant to anything truly transformative.” (GA p 197)

With this book, Phillips writes, “The Glacier Trust is trying to frame adaptation as a positive and transformative process grounded in the principles of social justice and ecological enhancement.” (GA p 204)

We must adapt to climate changes in future, and we are adapting already. But if the adaptations are merely ad hoc and not thoughtfully considered, they are more likely to be maladaptations than great adaptations.

1 Paul Cox and Stan Cox provide an excellent historical overview of the mitigation/adaptation divide in their chapter “Adaptation and Mitigation Amid the Consequences of Failure”. (In Energy Transition and Economic Sufficiency, Post Carbon Institute, 2021.) They conclude that “Societies once could choose between changing direction or dealing with climatic disaster; now it is necessary to do both at once.”

Image at top: Grounding of John B. Caddell (tanker ship) by Hurricane Sandy, November 2012 in New York City. Photo by Jim Henderson, on Wikimedia Common.

Around the world in a shopping cart

Also posted on Resilience.

Christopher Mims had just embarked on his study of the global retail supply chain when the Covid-19 pandemic broke out. Quickly, he found, affluent consumers redoubled their efforts at the very activity Mims was investigating:

“Confronted by the stark reality of their powerlessness to do anything else and primed by a lifetime of consumerism into thinking the answer to the existential dread at the core of their being is to buy more stuff, Americans, along with everyone else on Earth with the means to do so, will go shopping.” (page 6-7; all quotes here are from Arriving Today)

Arriving Today is published by Harper Collins, September 2021.

More than ever, shopping during the pandemic meant shopping online. That added complications to the global logistics systems Mims was studying, and added another strand to the story he weaves in Arriving Today: From Factory to Front Door – Why Everything Has Changed About How and What We Buy. (Harper Collins, 2021)

The book traces the movements of a single, typical online purchase – a USB charger – from the time it leaves a factory in Vietnam until it’s delivered to a buyer in the US. Sounds simple enough – but it’s an immensely complicated story, which Sims tells very well.

In the process he dives into the history and present of containerized shipping; working conditions for sailors, longshoremen, truckers, and warehouse employees; why items are scattered around a “fulfillment center” in the same way data files are scattered around on a computer drive; the great difficulty in teaching a robot to pick up soft packages wrapped in plastic film; and why no supercomputer can calculate the single best route for a UPS driver to take in making a hundred or more deliveries in the course of an average day.

How long can this system continue to swallow more resources, more small businesses, more lives? If there is a major weakness to Sims’ treatment, it is in suggesting that the online retail juggernaut must, inevitably, continue to grow indefinitely.

A key issue that is absent from the book is the energy cost of the global supply chain. Sims devotes a great deal of attention, however, to the brutal working conditions and relentless exploitation of working people in many segments of the delivery system. At the very least, this evidence should lead one to wonder when a tipping point will be reached. When, for example, might workers or voters be driven to organize an effective counterforce to insatiably acquisitive billionaires like Jeff Bezos? When, more grimly, might the portion of the population with discretionary income become so small they can no longer prop up the consumer economy?

“Taylorism – the dominant ideology of the modern world”

The unifying thread in Sims’ presentation is this: “Taylorism” – the early 20th-century management practice of breaking down factory work into discrete movements that can be “rationalized” for greater company profits – has now turned many more sectors into assembly lines. Today, Sims writes, “the walls of the factory have dissolved. Every day, more and more of what we do, how we consume, even how we think, has become part of the factory system.”

The factory system, in Sims’ telling, now stretches across oceans and across continents. It finds clear expression in facilities that are owned or controlled by the management practices of Amazon. In Amazon’s sorting, packing and shipping facilities, what makes the company “particularly Darwinian” is the floating rate that constantly and coldly passes judgment on employees.

With warehouse work divided into discrete, measurable and countable tasks, management algorithms constantly track the number of operations completed by each worker. Those who perform in the bottom 25% are routinely fired and replaced. As a result, Sims writes, “most workers in an Amazon warehouse are constantly in danger of losing their jobs, and they know it.”

There is no paid sick leave, so cash-strapped employees often have no choice but to work even when injured or sick. (Free coffee and free Ibuprofen are made available to help them work through fatigue or pain.) But if ill health causes a drop in performance they won’t “make the rate” and they will be fired. Those who are exceptionally physically fit, and who seldom get sick, are still likely to be worn down by the relentless pace eventually.

To replace workers, Sims says, “the company has all but abandoned interviewing new hires.” Screening and training new employees can be expensive processes, but they are processes in which Amazon invests little. A constant cohort of new employees are dropped into the stream and they simply sink or swim:

“Everyone I talked to about their first months at Amazon said that the attrition rate they witnessed was greater than 50 percent in the first two months.” (page 209)

Some companies might regard high employee turnover as a huge liability. For Amazon, Sims explains, high turnover is not a bug, it’s a feature. The turnover allows the company “to grab only the most able-bodied members of America’s workforce” (page 235) and to constantly replace them with new employees who haven’t yet gotten sick or injured.

If that weren’t enough, the high turnover benefits Amazon in another important way: “it makes it almost impossible for workers to unionize.” (page 210) 

UPS trucks in Manhattan, 2010. Photo by Jeremy Vandel, licensed under Creative Commons Attribution-Non Commercial license.

The last mile

“[Amazon’s] relentless measurement, drive for efficiency, loose hiring standards, and moving targets for hourly rates are the perfect system for ingesting as many people as possible and discarding all but the most physically fit.” (page 235-236)

As Amazon’s share of retail shopping grows and it Taylorizes its warehousing, there is another big link in the supply chain in which the company sees opportunity to slash worker compensation and boost corporate profits.

Until recently transportation of packages between sorting centers, and along the “last mile” to customers’ doorsteps, has been controlled by a wide array of trucking companies. One of the biggest of these companies, UPS, is a throwback to a day when most truck drivers were unionized, well paid, and received benefits like paid sick days, company health insurance, and pensions.

A driver for UPS is well trained, often very experienced, and learns to “go from stopping their truck to getting a package out of it in nine seconds.” (page 271) But a full-time driver for UPS also makes more than $30/hour plus benefits. Jeff Bezos, who increased his wealth by $65 billion in the first year of the pandemic, covets the paycheque of that UPS driver, along with the paycheque of anyone else in the supply chain whose job, if it can’t be robotized, could be turned over to a minimum-wage gig worker, aka “independent contractor”.

UPS and FedEx, Sims writes, together have 80 per cent of the US package delivery business. FedEx, along with nearly all other parcel-delivery companies, pay roughly minimum wage, with minimal benefits. Care to guess which company Amazon would like to emulate?

Indeed, as of 2018 Amazon itself has roared into the delivery business. “By the middle of 2020s,” Sims writes, “Amazon Logistics … is projected to take the number one spot from UPS.” (page 252)

Citing the research of Brandeis University professor David Weil, Sims concludes:

“Everything about Amazon’s decision to hire delivery companies that hire drivers, rather than hiring those drivers directly, is about pushing down wages, eliminating workplace protections, evading liability in the event of accidents, avoiding workplace litigation, eliminating the expense of benefits, and eliminating the possibility of drivers ever unionizing ….” (page 278)

In the last sentence of his book, Sims cites the 100 billion packages per year now shipped through the online retail supply chain, and he exhorts us to “imagine a future in which that number has doubled or tripled; imagine a future in which it is the way virtually every finished object gets anywhere.” (page 288)

Let’s imagine: Factory jobs in every sector will have moved to the lowest-wage countries with adequate industrial capabilities. Formerly well-paid factory workers in Rust Belt towns will compete for Amazon warehouse jobs that offer them minimum wage, for as many months as their bodies can sustain the constantly accelerating pace of simple repetitive tasks. Robots will have replaced human wage-earners wherever possible. And last mile delivery drivers will take orders from Amazon but receive their meager paycheques from other companies whose names most of us will never see.

In that paradise of capitalist productivity, who besides Jeff Bezos will still have enough income to fill their shopping carts?

Image at top: Your Cart is Full, composed by Bart Hawkins Kreps from public domain graphics.

‘This is a key conversation to have.’

This afternoon Post Carbon Institute announced the release of the new book Energy Transition and Economic Sufficiency. That brings to fruition a project more than two-and-a-half years in the making.

Cover of Energy Transition and Economic Sufficiency

In May 2019, I received an email from Clifford Cobb, editor of the American Journal of Economics and Sociology. He asked if I would consider serving as Guest Editor for an issue of the Journal, addressing “problems of transition to a world of climate instability and rising energy prices.” I said “yes” – and then, month by month, learned how difficult it can be to assemble a book-length collection of essays. In July, 2020, this was published by Wiley and made accessible to academic readers around the world.

It had always been a goal, however, to also release this collection as a printed volume, for the general public, at an accessible price. With the help of the Post Carbon Institute that plan is now realized. On their website you can download the book’s Introduction –which sets the context and gives an overview of each chapter – at no cost; download the entire book in pdf format for only $9.99US; or find online retailers around the world to buy the print edition of the book.

Advance praise for Energy Transition and Economic Sufficiency:

“Energy descent is crucial to stopping climate and ecological breakdown. This is a key conversation to have.” – Peter Kalmus, climate scientist, author of Being The Change

“This lively and insightful collection is highly significant for identifying key trends in transitioning to low-energy futures.” – Anitra Nelson, author of Small is Necessary

“The contributors to this volume have done us a tremendous service.” – Richard Heinberg, Senior Fellow, Post Carbon Institute, author of Power: Limits and Prospects for Human Survival

“For those already applying permaculture in their lives and livelihoods, this collection of essays is affirmation that we are on the right track for creative adaption to a world of less. This book helps fill the conceptual black hole that still prevails in academia, media, business and politics.” – David Holmgren, co-originator of Permaculture, author of RetroSuburbia

“The contributors explain why it is time to stop thinking so much about efficiency and start thinking about sufficiency: how much do we really need? What’s the best tool to do the job? What is enough? They describe a future that is not just sustainable but is regenerative, and where there is enough for everyone living in a low-carbon world.” – Lloyd Alter, Design Editor at and author of Living the 1.5 Degree Lifestyle: Why Individual Climate Action Matters More Than Ever

Some sources for the print edition:

In North America, Barnes & Noble

In Britain, Blackwell’s  and Waterstones

In Australia, Booktopia

Worldwide, from Amazon

‘Zero crashes, zero congestion, zero emissions’ – the perennial myths of autonomous vehicles

Also posted on Resilience.

For a hundred years the auto industry has held out visions of a trouble-free future for drive-everywhere society – and that future is always about 20 years away. Peter Norton urges us to see the current hype about automated vehicles in the cold light of the failed promises of the past.

American automakers had a problem in the 1920s. Cars were selling well in rural areas, but in the cities – home of a steadily growing share of the population – cars were meeting a lot of resistance.

Autonorama, by Peter Norton, is published by Island Press, October 2021.

Parking was scarce, streets were full of people, drivers usually had to go slow – and they still managed to kill a shocking number of pedestrians. Cars weren’t very convenient in cities, and there was so much public outrage over killings that many cities were considering severe restrictions on car use.

The response, Peter Norton writes in Autonorama, came from the coalition of automakers, car dealers, drivers, oil companies, and road builders he refers to as “motordom”. Their strategy had both long-term and short-term prongs. First, it was necessary to win public acceptance of the radical idea that city streets should be generally cleared of pedestrians so that cars could routinely drive faster. Second, local, state and federal governments had to be persuaded to invest millions, and soon billions, in widening streets and in building entirely new highways, not only between cities but within cities.

These long-term efforts, however, wouldn’t keep sales up in the short term. As Norton explains,

“No matter what the expenditure on roads and highways, in no given year could it deliver marked improvement. What was needed was a clear vision of a more distant and idealized future toward which motordom was striving. The promise of future perfection can buy tolerance of present affliction.” (Autonorama, from Island Press, October 2021, page 29)

To present this “clear vision of an idealized future”, motordom turned to creative minds in advertising, theater and film-making. During the 1930s, GM, Ford and Shell sponsored increasingly elaborate presentations of future cities where everyone drove, everywhere, without a hint of traffic congestion, and in perfect safety. The process culminated in Futurama, by far the most popular exhibit at the 1939 New York World’s Fair. In Norton’s view, the Futurama template has been revived periodically by motordom ever since. “Autonorama”, the heavily hyped story that “autonomous vehicles” will soon take over our roads, while ending crashes, congestion and emissions, is the latest iteration of a marketing fantasy now several generations old.

By the late 1950’s, one element of the strategy had been largely accomplished: new standards in traffic engineering had enforced auto dominance on streets, and had defined any delay to drivers – caused, of course, by all the other drivers – as an unacceptable cost to all society which should be remedied by public expenditure on roadways. A second strategic element – a vast new highway-building project – had been approved and was under construction.

Yet traffic congestion grew as rapidly as the number of cars on the roads and streets, as did the numbers of crash casualties. It was time for a new round of Futurama, and motordom answered the call with language that remains familiar all these years later.

“General Motors Avenue of Progress” with concept car “GM-X Stiletto” on display at 1964 New York World’s Fair. Photo by Don O’Brien, from Wikimedia Commons.

“Automobile accidents will be eliminated completely”

In a 1958 episode of Disneyland sponsored by the Portland Cement Association, the narrator intones,

“As Father chooses the route in advance on a push-button selector, electronics take over complete control. Progress can be accurately checked on a synchronized scanning map. With no driving responsibility, the family relaxes together. En route, business conferences are conducted by television.” (quoted in Autonorama, page 51)

The specifics of how the nascent electronics industry might accomplish these wonders had to be left to the imagination. No matter. A 1961 Pennsylvania ad campaign assured readers that “the nation’s finest automotive and scientific brains … predict that someday in the future automobile accidents will be eliminated completely.” If that blissful fantasy remained distant, it was not for lack of industry effort. Technology companies, auto makers, and government transportation departments teamed up to construct automated car test tracks in locations around the US. The vision received its most elaborate portrayal in GM’s Futurama 2, the biggest pavilion at the 1964-65 New York World’s Fair.

To the extent that newly widened arterial roads were engineered for greater speed, they also became more deadly for all users, including the fewer and fewer remaining pedestrians. And to the extent that officially favored development patterns induced people to live farther away from work, schools and shopping, even more people became car-dependent and the roads filled with congestion as fast as they were built.

As Norton explains, American cars were and remain the least spatially efficient mode of transportation in common use. It never made sense to think that by putting each driver/passenger in a steel box that takes 10 square meters of road space, we would vanquish the problem of roadway congestion. Though a congestion-free car culture could never be achieved, it remained essential for motordom to keep painting the pretty picture – all to keep consumers buying new cars every few years, and to keep politicians authorizing greater public works expenditures.

The road-building boom begun in the 1950s, with “the biggest public works project in history” justified primarily for its supposed traffic congestion benefits. But “Four decades and $100 billion later, GM was claiming that congestion was worse than ever, and getting worse still.” (Autonorama, page 93) The congestion was cited to promote a new round of public spending in what Norton terms “Futurama 3”. Reflecting public concern about the deadly effects of air pollution, the visions also started to promise the elimination of harmful emissions.

In the 1990s the new focus was on “Intelligent Highway-Vehicle Systems”. A decade of work yielded one viable congestion-reducing technology – but it was not a technology the auto industry could support. Electronics had advanced to the point where it was clearly workable to automatically charge road tolls at times of peak use, or within perennially congested areas such as urban cores. Although congestion pricing has now been used to great success in Europe, the practice does not encourage people to buy more cars, and so it was not a strategy American motordom embraced.

The latest and current flourish of car culture futurism is what Norton terms “Autonorama.” Over the past two decades, the emphasis has shifted from “smart highways” to “smart cars,” with a promise that smart cars will soon safely drive themselves everywhere, from the wide-open road to city streets teeming with cars, buses, bicyclists and pedestrians. And today, Norton adds, autonomous vehicle boosters want to sell not just new cars and new roads, but also new data.

Stanford Racing and Victor Tango together at an intersection in the DARPA Urban Challenge Finals. The 2007 contest was the third in a series sponsored by the Defense Advanced Research Projects Agency, to promote development of automated vehicles. Six of the 11 entrants completed the 96-km course, through a simulated urban environment at the George Air Force Base in Victorville, CA. Photo from Wikimedia Common.

“Social media on wheels”

If you’re one of the tens of millions who start and end each workday with a long, stressful drive, you might not even be aware of one of the major downsides in driving. A 2016 report from consultants McKinsey & Co. highlighted “the greatest single constraint on personal data collection besides sleep: the attentional demands of driving.” There’s the problem: while you are driving you can’t give your full attention to social media!

And that’s no joke, to the huge industry of data collectors and brokers. Time spent looking at the road is time wasted – because while you’re driving, the data hounds are unable to learn much about your likes, dislikes, what you believe, what you watch, what you share, and what you are likely to buy.

In an insightful chapter titled “Data Don’t Drive,” Norton cautions us to think carefully about the business catch-phrase “data-driven.” Data might guide decisions, but data don’t drive decisions – people do. People make decisions through judgment calls, both about the meaning of data, and about which data matter and which data don’t matter.

Where profit-focused industries are concerned, it is not data that matter but monetized data or at least monetizable data. The engines of consumerism are stoked by data from and about people who can spend money, and preferably lots of it. Which data is likely to be worth more: an hour’s worth of smart-phone data from a person standing in the cold waiting for a bus? Or an hour’s data from the in-car digital entertainment system in a state-of-the-art new automated car?

This in-built tendency to reinforce social inequality is at the heart of Norton’s concerns, not only with Autonorama but with the whole history of auto-centered planning. It’s not just that vast sums of public money have been devoted to infrastructure that never comes close to the promise of “no congestion, no crashes.” It’s also that in focusing attention over and over on the needs and wishes of motordom, the needs of those who can’t or won’t drive are systematically downplayed. In the process, industry and government fail dismally to preserve or create safe, efficient, pleasant, healthful, walkable urban environments. The modest expenditures that would make cities safe for non-drivers are declined, while hundreds of billions are spent instead on transport “improvements” that continue to produce more deaths, more congestion, and more pollution.

Norton writes that

“The twentieth century should have taught us that accommodation of expensive transport does not merely neglect affordable mobility; it actively degrades it.” (Autonorama, page 180)

Two decades into the 21st-century, we should heed Norton’s warnings about Autonorama, turn our backs on car culture, and begin the rewarding task of reclaiming urban space for efficient public transit, safe cycling, and healthy and stress-free walking.

Photo at top of page: An official DARPA photograph of Stanley at the 2005 DARPA Grand Challenge. Stanley, created by the Stanford University Racing Team, won the race and the 2 million US dollar prize. The automated vehicle race was sponsored by the US Defense Advanced Research Projects Agency (DARPA). Of the 23 vehicles entered in the 2005 running, five managed to complete the 212 kilometer course. Photo from Wikimedia Commons.