The fat-takers cross the oceans

Also published on Resilience

Ecological overshoot is a global crisis today, but the problem did not begin with the fossil fuel age. From its beginnings more than five centuries ago, European colonization has been based on an unsustainable exploitation of resources.

In Seeker of Visions, John (Fire) Lame Deer says “The Sioux have a name for white men. They call them wasicun – fat-takers. It is a good name, because you have taken the fat of the land.”

The term, often also written as “wasi’chu”, has engendered discussion as to what the words originally meant in the Lakota language.1 In any case, the phrase “fat-takers” seemed fitting to Lame Deer, it caught on quite widely – and it took literal meaning to me as I learned more about the history of European colonization.

When I wrote a newspaper review of a then-new book by Farley Mowat in the 1980s, I couldn’t help but recall Lame Deer’s words. Nearly thirty years later, I’ve come to regard Mowat’s book, Sea of Slaughter, as a foundational study in biophysical economic history.

Here, Canadians may ask incredulously, “Since when was Farley Mowat a biophysical economist?” And readers from everywhere else are likely to ask “Farley who?” A brief bit of biography is in order.

Farley Mowat (1921 – 2014)  was one of the most successful Canadian writers of all time, author of dozens of best-selling books beginning in 1952 and continuing into the twenty-first century. He wrote in a popular style about his own experiences in Canada’s far north, the maritime provinces, travels in Siberia, and his life-long love of the natural world. Never shying from controversy, Mowat became a hero to many Canadians when he was banned from entering the US, and he was vilified by many for his support of the direct-action Sea Shepherd Conservation Society which named two of its ships in his honour. His books also received withering criticism from some writers who questioned Mowat’s right to use the label “non-fiction” for any of his books.2

Later in this post I will touch on Mowat’s shortcomings as a historian. First, though, a personal note in the interest of full disclosure. For ten years I lived just a few blocks from Mowat’s winter home in Port Hope, Ontario. Although we crossed paths and occasionally shared a few words while walking the Lake Ontario shoreline, I was formally introduced to him only once, near the end of his life. He had decided to sell off much of his collection of his own books. Though he was famously computer-averse, he recognized that the new-fangled “world wide web” could help sell his library. I was part of the team that built him a website, and at the launch party he honoured me with the title “the big spider”.

Of more lasting significance for me, though, was a brief correspondence with Mowat in 1985. After reviewing Sea of Slaughter, I wrote to Mowat that the systematic exploitation of animal resources, over several centuries starting in the 16th, likely played an important role in the dramatic economic advance of western European societies. Mowat sent back a courteous note agreeing with this observation and encouraging me to carry this line of thinking further. Decades later, I’m following up on Mowat’s suggestion. 

A 1985 trade paperback edition of Sea of Slaughter

While many of his books were written and received as light reading, Sea of Slaughter was anything but cheerful. He often said it was the most difficult of all of his books for him to complete, because the content is almost unrelentingly brutal.

In the opening pages Mowat writes, “This is not a book about animal extinctions. It is about a massive diminution of the entire body corporate of animate creation.” (page 13)3 With a primary focus on the North Atlantic coasts of North America, but moving across the continent and to far-away oceans, Sea of Slaughter spotlights the price paid by many species – in the sea, on land and in the air – wherever colonizers determined that slaughter was profitable. Some of the species he discusses were hunted to extinction, but far more were reduced to such small remnant populations that the killing machines simply moved on.

A key reason for the slaughter, Mowat explains, is that so many animals of the North Atlantic necessarily carry a generous layer of fat to protect them from cold water. And animal fat, he took care to remind readers of the current era, has throughout history been a key nutrient and a key energy source, especially for people in cold climates. This was no less true in Europe during the Little Ice Age of the 14th to the 19th centuries, but Europeans had a problem – they had already taken unsustainable numbers of the fattest marine species from the eastern North Atlantic.

The Basque people of what is now northwest Spain and southwest France had become the unquestioned leaders in hunting whales on the open seas, and it was due to this prowess that they feature so prominently in Sea of Slaughter.4 Discussing the intertwined histories of the Basque culture and marine mammals, Mowat writes:

“By 1450, a fleet of more than sixty Basque deep-sea whalers was seeking and killing sardas [black right whales] from the Azores all the way north to Iceland. They wrought such havoc that, before the new century began, the sarda, too, were verging on extinction in European waters. At this crucial juncture for the future of their whaling industry, the Basques became aware of a vast and previously untapped reservoir of “merchantable” whales in the far western reaches of the North Atlantic.”

The same was true, Mowat argued, of many other fat-rich species that lived in cold northern waters. Several types of whales, walrus, water bears (known today as polar bears), and other species had become scarce or non-existent in European waters – but were found in great abundance at the other side of the Atlantic.  

Fishermen spearing whales from the safety of their boats. This image also depicts other fat-rich species which were intensively exploited by Europeans in North American waters, including the narwhal, a “morse” – the Old English term for walrus – and plump waterbirds. Coloured etching. Credit: Wellcome Collection. Attribution 4.0 International (CC BY 4.0)

Before the fur trade

Though Canadians learn that the fur trade was the essential economic development in our early history, Mowat says that fur trading was a relatively late development. The first economic resource, in chronology and in priority, was the oil known as “train” (from the Dutch traan, meaning “tear” or “drop”) rendered from fatty marine animals. This was followed by fish, then hides for durable leather, and finally by furs.

“Late fifteenth-century Europe found itself increasingly short of oil,” Mowat wrote. “In those days, it came mostly from rendering the fat of terrestrial animals or from vegetative sources. These were no longer equal to the demand …. As the sixteenth century began train became ever more valuable and in demand ….” (page 206)

Only the Basques had the ship-building, provisioning, ocean-going and hunting expertise to find new sources of train across the ocean, and they did so at the dawn of European colonizing of the “New World”, Mowat writes. He notes that “the municipal archives of Biarritz contain letters patent issued in 1511 authorizing French Basques to whale in the New World ….” (page 213) Within a few decades, Basque whaling stations dotted the coast of Newfoundland, Labrador, and the Gulf of St. Lawrence. There were dozens of rendering factories, where the whales were cut into pieces so the blubber could be dropped into cauldrons and rendered into high-quality oil that was shipped in barrels to European markets.

The major whale species near shore could not long withstand such intensive depredations, but the heyday of the Basque whale “fishery” was not destined to last much longer in any case. Most of the Basque fleet was dragooned into the ill-fated Spanish Armada and destroyed in 1588, and by then plenty of foreign competitors were moving into the train trade.

By the late 16th century, fleets from several other nations were taking fish, seabirds, and marine mammals in great numbers. Though there was specialization, even ships outfitted primarily for fishing or whaling would capture and consume seabirds by the thousands.

The cod fishery, Mowat explains, rapidly became an industry of huge importance to the European diet. But cod is lean, and “if eaten as a steady diet in cold latitudes can result in chronic malnutrition because of a low fat content.” (page 28) The crew of a sailing venture were not going to earn a profit unless they had high-energy provisions. Fat-insulated seabirds, found by the tens of thousands in coastal rookeries, met the need:

“The importance of seabird rookeries to transatlantic seamen was enormous. These men were expected to survive and work like dogs on a diet consisting principally of salt meat and hard bread. … Some Basque ships sailing those waters displaced as much as 600 tons and could have comfortably stowed away several thousand spearbill [great auk] carcasses – sufficient to last the summer season through and probably enough to feed the sailors on the homeward voyage.” (page 28 – 29)

The great auk, a flightless bird which stood nearly a meter tall and weighed 5 kg, originally numbered in the millions. Not a single live great auk has been seen since the mid-nineteenth century.

Ships which specialized in bringing back oil could and did switch species when their primary quarry got scarce. They learned that “as much as twelve gallons of good train could be rendered from the carcass of a big water bear” – with the result that in North America as well as in Europe, the ursus maritimus was soon confined to arctic seas that were hard to access by ship. The same pressures applied to walruses, which were highly valued not only for oil but also for ivory and for hides which were tanned into the toughest grades of leather.

The Gulf of St. Lawrence was home to huge numbers of walrus. In 1765, a Lieutenant Haldiman was asked to report on the prospects for walrus hunting at the Magdalen Islands. “The Magdalens seem to be superior to any place in North America for the taking of the Sea Cow,” he wrote. “Their numbers are incredible, amounting, upon as true a computation as can be made, to 100,000 or upwards.” (page 318)

Just 33 years later, the British Royal Navy asked for another report on the walrus population of the Magdalens. Captain Crofton’s report was terse: “I am extremely sorry to acquaint you that the Sea Cow fishery on these islands is totally annihilated.” (page 319)

The various species of seal were more numerous and geographically dispersed. Yet the colonial exploitation system showed itself capable of taking seals at a far faster rate than could be sustained. Mowat writes,

“The period between 1830 and 1860 is still nostalgically referred to in Newfoundland as the Great Days of Sealing. During those three decades, some 13 million seals were landed – out of perhaps twice that number killed.” (page 361)

By the end of the 19th century, seals, too, were in steep decline. Whales and walruses, meanwhile, were being slaughtered in the most distant seas, with steep drops in their populations occurring within decades. Once Yankee whalers had reached the far northern reaches of the Pacific in about 1850, “It took the Americans just fifty years to effectively exterminate the Pacific bowhead.” (page 240) It was difficult for ships to get around the coast of Alaska into the Beaufort Sea, but high prices for train and baleen made the trip worth the trouble – for a couple of decades: “By 1910 the Bering-Beaufort-Chukchi Sea tribe of bowheads was commercially and almost literally extinct.” (page 241) 

Arctic Oil Works, in San Francisco, about 1885. Courtesy UC Berkeley, Bancroft Library. John R. Bockstoce writes that this facility was capitalized at $1,000,000, and adds: “the Arctic Oil Works had the advantage of allowing the Pacific Steam Whaling Company’s ships (upper left) to unload directly at the refinery. Oil could be pumped into the 2,000-gallon tanks …. Refining was done in the three-story structure at the right.” (In Whales, Ice, & Men: The History of Whaling in the Western Arctic, University of Washington Press, 1986).

Facts or fictions

Several of Mowat’s books were criticized as being more fiction than fact. His angry responses did not, in my eyes, enhance his credibility. Professing to work in service of fundamental truths, Mowat said “I will take any liberty I want with the facts so long as I don’t trespass on the truth.”5 In that attitude, he sounds like a pioneer of “truthiness”, “telling my truth”, and “alternative facts”.

Rereading Sea of Slaughter twenty-five years after its publication, I find it frustrating that the wealth of statistics is accompanied by very few footnotes or references. But I have not seen the same type of criticism of Sea of Slaughter that some of his other books attracted, and much of the story he tells has been corroborated in other books I have read in the ensuing years.

As I was working on this essay, I was particularly glad to see an excellent new article by editor and writer Ian Angus. Entitled “Plundering a New Found Land”, published on the site Climate & Capitalism, the article not only confirms the picture Mowat paints of the Newfoundland cod fishery, but also provides important context and scale about this venture. Angus writes,

“While Spanish ships carried silver and gold, a parallel trade involving far more ships developed far to the north. Historians of capitalism, including Marxists, have paid too little attention to what Francis Bacon called ‘the Gold Mines of the Newfoundland Fishery, of which there is none so rich.’”

Mowat had quoted Charlevoix, writing in the 1720s about the cod fishery in similar terms: “These are true mines, which are more valuable, and require much less expense than those of Peru and Mexico.” (page 169)

While Mowat described the drastic reduction, over a few short centuries, of the once abundant North Atlantic cod, Angus tells us what this fishery meant to the recipients of the bounty:

“The Newfoundland fishery drove ‘a 15-fold increase in cod supplies … [and] tripled overall supplies of fish (herring and cod) protein to the European market.’ Cod, formerly a distant second to herring, comprised 60% of all fish eaten in Europe by the late sixteenth century.”

Back in 1985, when I wrote to Farley Mowat in response to Sea of Slaughter, I suggested that the resources taken from the oceans were likely far more important to European economic advancement than were the gold and silver taken from mines. Years later, viewing the world through a biophysical economic lens, it seems clear that the gold and silver would have been of little or no value unless the populations of Europe had been adequately fed, with adequate energy for their work, plus adequate fuels for heat and light in their homes and workplaces.

Angus’ research confirms that the North American cod fishery was of huge dietary importance to Europe. And I think Mowat was correct in saying that meals of lean cod also needed to be supplemented with edible oils, and that a hard-working labour force in cold northern Europe must have benefited greatly from the thousands of shiploads of fat taken from the animals of the northern seas.6

Angus also tells us about the important work of Canadian researcher Selma Huxley Barkham, whom he credits with having “radically changed our understanding of the 16th century fishery in Newfoundland and Labrador.” It was Huxley Barkham, Angus writes, who unearthed in the 1970s the evidence that the Basques pioneered the large-scale exploitation of both cod and whales off the coasts of Newfoundland, starting at the very beginning of the 16th century.

The name Selma Huxley Barkham does not appear in Sea of Slaughter. Yet I was to learn that her work was essential to the next chapter of this story.

The sheltered harbour at Pasaia, on the Basque coast near San Sebastian, was home port for  many of the whalers who ventured across the Atlantic in the early 16th century.


In November of 1565, a storm blew up along the coast of Labrador, striking the Basque whaling station at Red Bay. Farley Mowat tells us how one ship ended far beneath the waves:

“The 500-ton San Juan has begun to drag. … Having torn her anchors free of the bottom, the ponderous, high-sided carrack, laden to her marks with a cargo of barrelled oil and baled baleen, swings broadside to the gale and begins to pick up way ….

“Nothing can stop her now. With a rending of oak on rock, she strikes. Then the storm takes her for its own …. She lurches, and rolls still farther, until she is lying on her beam  ends and is flooding fore and aft. Slowly she begins to settle back and slips to her final resting place five fathoms down.

“She lies there yet.”

She lies there yet, and was all but forgotten for centuries. But due in no small part to the archival research of Selma Huxley Barkham, the San Juan was located in the mid-1970s. The wreck had been exceptionally well preserved by the nearly freezing waters, and divers gathered a wealth of documentation about its design, Basque construction techniques, and its contents of crew, cargo and provisions.

I have not been to Red Bay, but in October of 2018 I paid a visit to the Basque port from which the San Juan and so many other ships were launched. In this port today, a dedicated team at the Albaola heritage centre is partway through a difficult and lengthy process: they are building an exact replica of the San Juan, using only materials and tools that would have been available in the sixteenth century.

Visitors can see the shipbuilding in progress, along with extensive exhibits about Basque shipbuilding history, the sources of materials for the ships, and the provisions the ships carried for their trans-oceanic voyages. They have also published a beautiful and informative book, The Maritime Basque Country: Seen Through The Whaleship San Juan. (Editions in French and Basque are also available.)

The Albaola centre’s research paints a picture of a sophisticated, highly organized industrial enterprise that reached far beyond the shipbuilding yards. Because the Basques of the 16th century built so many ships, which each needed lots of strong timber in a variety of configurations, some areas of the Basque region specialized in growing oak trees in particular ways: some trees were kept very straight, while others were bent while still supple, so the wood was already shaped, and at maximum strength, for use many years later in parts of the ship that needed angular timbers. Clearly, this industry could only have developed through the accumulated experience of many generations.

A worker at the Albaola centre shaping a timber piece for the San Juan replica, in October 2018. For this project, the builders were able to search area forests for oak trees with sections naturally shaped to approximately the dimensions needed. Centuries ago, when many such ships were built every year, foresters through the region carefully trained growing trees for these purposes, producing “grown-to-order” pieces that had maximum strength but required minimal carving.

Similarly, the barrels used for holding cider – safer to drink on long voyages than water, and consumed by sailors on an everyday basis – and for packaging the whale oil, required vast numbers of barrel staves, all made to standard sizes, with the ships’ holds designed to carry specific numbers of these barrels. Even the production of ship’s biscuit or hardtack – the dry bread which kept for months and which was the monotonous basis for sailors’ diet – was a big business. The Maritime Basque Country says that before the whaling fleet left port each spring, 250 tons of hardtack had to be baked by bakers throughout the region.

Seeing the replica of the San Juan under construction, it was impossible not to marvel at the ingenuity of the sixteenth century society which built the original San Juan and so many ships like it. Centuries ahead of what we term the Industrial Revolution, there were highly sophisticated and complex technologies and forms of social organization at work, making possible what we refer to today as “economic development”.

At the same time, it is clear from Sea of Slaughter that European societies were already practicing ecological overshoot, centuries before the Industrial Revolution and centuries before the fossil fuel phase. Europeans had already taken the fat from many of the nearby ecosystems, and though they found apparently abundant sources of fat across the oceans, within a few short centuries those resources too would be drawn down.

In biophysical economic terms, Europeans (and colonizers with roots in Europe) boosted their economies through rapid and unsustainable exploitation of resources, including, in particular, energy resources, and they did so long before fossil fuels came into use. The challenging implication is that in the coming decades, faced simultaneously with a climate crisis, a social equity crisis, dwindling accessible supplies of the energies we have taken for granted, and a biodiversity crisis, we must do far more than return to pre-fossil-fuel practices. We must learn to live within the earth’s means. We must un-learn patterns that have shaped European civilizations for more than five centuries.

Next in this series: The reality behind the illusion. Lame Deer understood that the green frog-skin world, in which everything is measured in dollars, is a bad dream – but in the mid-20th century that dream seemed to have immense real power. To conclude this series, I will examine the ideas that helped me to make sense of this riddle, and to make sense of economics. (Previous posts: Part I and Part II)

Image at top of page: A whale being speared with harpoons by fishermen in the arctic sea. Engraving by A. M. Fournier after E. Traviès. Credit: Wellcome Collection. Attribution 4.0 International (CC BY 4.0)



Can big science be sustained?

Reflections on Fundamentals by Frank Wilczek

Also published on Resilience

During a long career at the frontiers of physics Frank Wilczek has earned many honours, including a Nobel Prize for Physics in 2004. Fortunately for general readers he is also a gifted writer with a facility for explaining complex topics in (relatively) simple terms.

Perhaps you have, as I do, an amateur fascination with topics such as quantum electrodynamics (QED) and quantum chromodynamics (QCD), and questions such as “To what extent do the laws of physics work the same running forward in time or running backward in time?” If so I heartily recommend Wilczek’s latest book Fundamentals: Ten Keys to Reality. (Penguin Random House, January 2021)

Wilczek shares with us the sense of wonder and beauty that has kept him excited about his work for the past 50 years. You might realize, as I did, that with Wilczek’s help you will understand aspects of particle physics, cosmology, and the nature of time better than you ever thought you might.

Yet from the opening pages of the book, Wilczek drops in assertions about history, society and the role of science that I found both troubling and worthy of a more focused examination.

What makes western science so great? (Or not.)

In Fundamentals Wilczek spends most of his time discussing scientific developments during the 20th century, particularly developments that weren’t even mentioned in high-school textbooks the last time I took a course in physics. But he grounds his discussion in a celebration of the Scientific Revolution of the 17th century.

“The seventeenth century saw dramatic theoretical and technological progress on many fronts, including in the design of mechanical machines and ships, of optical instruments (including, notably, microscopes and telescopes), of clocks, and of calendars. As a direct result, people could wield more power, see more things, and regulate their affairs more reliably. But what makes the so-called Scientific Revolution unique, and fully deserving of the name, is something less tangible. It was a change in outlook: a new ambition, a new confidence.” (Fundamentals, page 4)

In subsequent centuries, the applied science that grew from this scientific revolution led to internal combustion engines, electric motors, all manner of telecommunications, digital cameras, lasers, magnetic resonance imaging and the Global Positioning System – to name just a few of the technologies that have transformed ways of life.

I count myself a fan of the scientific method, and I haven’t personally known anyone who is either ready, willing or able to live without any access to any of the technologies Wilczek cites as outgrowths of this method. But can these technological successes be credited solely to a new and superior approach to inquiry?

In the opening pages Wilczek states that “prior to the emergence of the scientific method, the development of technologies was haphazard.” (page 3) He then slips in an observation that to him requires no elaboration, presenting a graph of GDP growth with this comment:

“This figure, which shows the development of human productivity with time, speaks for itself, and it speaks volumes.” 

Graph from Fundamentals, by Frank Wilczek, page 3.

The graph speaks for itself? And just what does it say? Perhaps this: when at long last humans learned to extract ancient deposits of fossil energy, laid down over millions of years, and learned how to burn this energy inheritance in a frenzy of consumption, with no worries about whether successive generations would have any comparable energy sources to draw on, only then did “economic growth” skyrocket. And further: it’s not important that a great deal of wealth – from accessible fossil energy reserves to biodiversity to climate stability – has gone down as fast as that graph of GDP has gone up. It doesn’t matter, since in GDP’s accounting for economic growth there is no need to distinguish productivity from consumptivity.

As you might guess, what I glean from that GDP graph may not match what Wilczek hears, when he hears the graph “speak for itself.” But I think the relationship of science to the larger human enterprise, including the economy, deserves further scrutiny here.

That GDP is a crude economic indicator should become clear if we reflect on the left side of Wilczek’s graph as much as the right side. He credits the scientific revolution with leading to an explosion in productivity – but his graph shows a barely perceptible change in world GDP per capita for the period 1500 – 1800. Significant growth in GDP per capita, then, didn’t arise for at least a century after the scientific revolution, until about the time fossil fuel exploitation began in earnest.

Can this be taken as evidence that there were no fundamental changes in the world economy during the centuries immediately preceding the fossil fuel economy? To the contrary, some of human history’s most epic changes began about 1500, as western european nations colonized the Americas, instituted the slave trade on a massive scale, colonized large parts of Africa and Asia, and began a centuries-long transfer of ecological wealth from both land and sea around the globe, at the cost of hundreds of millions of human lives. Global economic wealth per capita may not have changed much during those centuries – but the distribution of that wealth, and the resulting wealth of a small slice of educated european elites, certainly did change. And it was from these elites that, with few exceptions, came the men (again, with few exceptions) who worked out the many discoveries in the scientific revolution.

It shouldn’t surprise us that these new understandings would come from people who had the economic security to get good educations, acquire expensive books, set up laboratories, make patient observations for years or decades, and test their theories even if any practical applications might be so far in the future as to be unforeseeable. A well-rounded assessment of the scientific revolution, then, should look not only at the eventual technological outcomes that might be credited to this revolution, but also the ecological and sociological factors that preceded this revolution. And a balanced assessment of the scientific revolution should also ask about blind spots likely to accompany this worldview, given its birth among the elite beneficiaries of a colonialism that far more of the world’s population were experiencing as an apocalypse.

In particular, it should be no surprise that among the class of people who do the lion’s share of consumption, the dominant faith in economics has conveniently assured them that their consumptivity equals productivity.

How much energy is enough energy?

Wilczek spends much of Fundamentals illuminating energy in many guises: the energy charge of an electron, the energy that holds quarks together to form protons, the gravitational energy of a black hole as it bends space-time, the dark energy that appears to be causing the universe not just to expand, but to expand at an accelerating pace. His explanations are marvels of clarity in which he imparts the sense of wonder that he himself felt at the outset of his lifelong scientific journey.

When he turns to the role that energy plays in human life and society, unfortunately, his observations strike me as trite. He titles one chapter, for example, “There’s Plenty of Matter and Energy”.

Here he gives us the unit AHUMEN, short for Annual Human Energy, which he calculates at 2,000 calories/day, which over a year comes to about 3 billion joules. With this unit in hand, he notes that world energy consumption in 2020 was about 190 billion AHUMENs, or about 25 AHUMENs per capita. He draws this conclusion:

“This number, 25, is the ratio of total energy consumed to the amount of energy used in natural metabolism. It is an objective measure of how far humans have progressed, economically ….” (p 127, emphasis mine)

If tomorrow we consume twice as much energy as we consume today, then by this “objective measure” we will have progressed twice as far economically. This sounds to me like neither clever physics nor clever economics, but mere mis-applied arithmetic.

Wilczek adds that Americans consume roughly 95 AHUMENs per person, without pointing out what should also be obvious: if the global average is 25 AHUMENs per capita, and Americans consume 95 per capita, that means hundreds of millions of people in our advanced global economy are getting only a few AHUMENs each.

Proceeding with his argument that “there’s plenty of energy”, Wilczek says that if we consider only “the portion of solar energy that makes it to Earth, then we find ‘only’ about 10,000 times our present total energy consumption. That number provides a more realistic baseline from which to assess the economic potential of solar energy.” (page 127)

Indeed, there is and always has been a vast amount of solar energy impacting the earth. That energy has always been enough to fry a human caught unprotected for too long in the desert sun. It’s always been enough to electrocute a human, when solar energy is incorporated into lightning storms. That abundant solar energy can even freeze us to death, when increasingly unstable weather systems push arctic air deep into regions where humans are unprepared for cold.

That energy has always been enough to kill crops during heat waves or to flood coastal cities when storms surge. With each passing year, as our geoengineered atmosphere holds in more heat, there will be more solar energy theoretically available to us, but immediately active in global weather systems. That will make our economic challenges greater, not simpler.

For that abundant solar energy to represent “economic potential”, we need to have technologies that can make that solar energy useful to us, and manageable by us, in cost-effective ways. Wilczek both recognizes and dismisses this concern in a single sentence:

“Technology to capture a larger fraction of that [solar] energy is developing rapidly, and there is little doubt that in the foreseeable future – barring catastrophe – we will be able to use it to support a richer world economy sustainably.” (page 140)

Wilczek himself might have little doubt about this, but I wish he had included some basis on which we could be confident this is more than wishful thinking.

While this discussion may seem to have veered a long way from the core concerns of Wilczek’s book, I suggest that the relationship of societal energy consumption to the needs of the scientific enterprise may soon become a critical issue.

ATLAS detector being assembled at Large Hadron Collider, 2006. Photo by Fanny Schertzer, 27 February 2006. Accessed via Wikimedia Commons.

The energy demands of big science

The work of 20th century physics has come with a high energy price tag. Famously, some of the major steps forward in theory were accomplished by brilliant individuals scribbling in notebooks or on chalk boards, using tools that were familiar to Newton. But the testing of the theories has required increasingly elaborate experimental setups.

The launching of a space telescope, which helps reveal secrets of the farthest reaches of our universe, is one energy-intensive example. But likewise in the realm of infinitesimally small, sub-atomic particles – where Wilczek has focused much of his work – the experimental apparatus has become increasingly grand.

Wilczek tells us about Paul Dirac, a pioneer in quantum electrodynamics who wrote in 1929 that “The underlying physical laws necessary for the mathematical theory of a large part of physics and the whole of chemistry are thus completely known.” Yet much subsequent progress in the field had to wait:

“When Dirac continued, ‘And the difficulty lies only in the fact that application of these laws leads to equations that are too complex to be solved,’ modern supercomputers were not even a dream.” (page 120)

The theoretical framework for the Higgs particle was proposed decades before it could be confirmed, and that confirmation carried a huge energy cost. “In the years prior to 2012, Higgs particle searches came up empty,” Wilczek writes. “We know now, in retrospect, that they simply didn’t bring in enough energy. The Large Hadron Collider, or LHC, finally did.” (page 176)

It’s not just that this collider involved the construction of a circular tunnel 27 km in circumference, nor that while operating it draws 200 MW of electricity, comparable to one-third the electricity draw of the city of Geneva. The power allows experimenters to smash protons together at speeds only 11 km/h less than the speed of light. And these collisions, in turn, result in nearly incomprehensible quantities of data being captured in the Atlas detector, which sends “all this information, at the rate of 25 million gigabytes per year, to a worldwide grid that links thousands of supercomputers.” (page 176)

When the tunnel had been bored, the superconducting magnets built and installed, the Atlas detector (itself twice the size of the Parthenon) assembled, the whole machine put into operation, and the thousands of supercomputers had crunched the data for months – then, finally, the existence of the Higgs particle was proven.

Wilczek doesn’t go into detail about the energy sources for this infrastructure. But it shouldn’t escape our attention that the experimental-industrial complex remains primarily a fossil-fueled enterprise. Fossil fuels fly researchers from university to university and from lab to lab around the world. Fossil fuels power the cement plants and steel foundries, and the mines that extract the metals and minerals. Many individual machines are directly powered by electricity, but on a global scale most electricity is still generated from the heat of fossil fuel combustion.

Wilczek cites the vast amount of solar energy that strikes the earth each day as a vast economic resource. Yet we are nowhere close to being able to build and operate all our mines, smelters, silicon chip fabrication facilities, intercontinental aircraft, solar panel production facilities, electricity transmission towers, and all the other components of the modern scientific enterprise, solely on renewable solar energy.

And if someday in the not-too-distant future we are able to operate a comparably complex industrial infrastructure solely on renewable energy, will this generate enough economic surplus to support tens of thousands of scientists working at the frontiers of research?

The U.S. Department of Energy’s Oak Ridge National Laboratory unveiled Summit as the world’s most powerful and smartest scientific supercomputer on June 8, 2018. “With a peak performance of 200,000 trillion calculations per second—or 200 petaflops, Summit will be eight times more powerful than ORNL’s previous top-ranked system, Titan. … Summit will provide unprecedented computing power for research in energy, advanced materials and artificial intelligence (AI), among other domains, enabling scientific discoveries that were previously impractical or impossible.” Source: Oak Ridge National Laboratory. Accessed via Wikimedia Commons.

Just one clue

Wilczek cites a famous quotation from equally celebrated physicist Richard Feynman. During a lecture in 1961 Feynman offered this question and answer:

“‘If, in some cataclysm, all of scientific knowledge were to be destroyed, and only one sentence passed on to the next generations of creatures, what statement would contain the most information in the fewest words? I believe it is the atomic hypothesis (or the atomic fact, or whatever you wish to call it) that all things are made of atoms.’” (Feynman, quoted in Fundamentals, page 61)

And Wilczek proposes this revision:

“Instead of ‘all things are made of atoms,’ we should say that ‘all things are made of elementary particles.’” (page 62)

This may seem nothing more than an intellectual parlor game, with scientific knowledge today increasing at an accelerating pace. Wilczek doesn’t sound worried about the death of scientific knowledge, when he says that “Technology has already given us superpowers, and there is no end in sight.” (page 171)

But as we roar ahead into the climate crisis, I think it would be helpful and appropriate to revise Feynman’s question, replacing the “if” with “when”:

If When, in some cataclysm, all of scientific knowledge were to be is destroyed, and only one sentence passed on to the next generations of creatures, what statement would contain the most information in the fewest words?

We can’t know for sure, of course, whether the climate cataclysm will destroy scientific knowledge. But what we can see is that we are on a so-far unwavering path to climate catastrophe, and that most governments around the world aren’t pledging (let alone fulfilling pledges) to make carbon emissions reductions that are even close to sufficient. With each passing year the challenge of transforming our civilization into a sustainable civilization grows more urgent, time grows shorter, and the consequences of failure grow more threatening not only to individual lives but to the very survival of our species. These threats are being documented and communicated in great detail by our scientific enterprises. And yet the greatest beneficiaries of our supposedly productive global economy (individual examples notwithstanding) lead the charge to the cliff.

So perhaps it’s time to consider seriously “What one sentence of information might be most useful to our survivors?”

Suppose we project our thoughts, right now, into a climate-ravaged future. Earth’s surviving inhabitants contend with a violently unstable climate. They struggle to gather enough food from deeply impoverished ecosystems, they try to build sufficiently robust shelters, they yearn to raise healthy children, and they face these challenges without any useful energy boosts from polluting fossil fuels (fuels which in any case will be hard to extract, since we’ll have already burned up the easily accessible reserves). Our digital networks of knowledge may well have gone dark, and our libraries may have flooded or burned.

In this future, will it be helpful to tell our descendants “All things are made of elementary particles?” Perhaps it will be many generations further on, if all goes well, before they can again support a scientific elite, armed with elaborate experimental apparatus, capable of making sense of these “elementary particles”.

I can’t help but wonder if, in this future, the best advice we might offer would be a simple warning: “Don’t do what we did.”

Photo at top of page: Grappling the Hubble Space Telescope. An STS-125 crew member aboard Space Shuttle Atlantis snapped a still photo of the Hubble Space Telescope after it was grappled by the shuttle’s Canadian-built Remote Manipulator System. Credit: NASA. Accessed at Wikimedia Commons.

An enthusiastic embrace of a mysterious planet

Also published at

Let’s face it, most of us don’t love the environment most of the time. More often than not, the environment is too cold, too hot, too buggy, too dry or too wet, and we try to keep it safely on the far side of a window or a TV screen.

Bicycle travel has a way of breaking us out of that narrow band of comfort. When we ride for more than a few days in one direction, it’s almost certain to rain or to snow, the wind will blow in the wrong direction, or perhaps it will get still and sultry and we’ll complain that there’s no wind at all. We either give up cycle touring, or we expand our appreciation beyond “nice” weather.

Lands of Lost Borders: Out of Bounds on the Silk Road, by Kate Harris, 2018, Knopf Canada, 300 pages

Yet few travelling cyclists will embrace the environment, in all its moods, with the eagerness shown by Kate Harris. That enthusiasm is just one of the qualities that makes Lands of Lost Borders so inspirational. Her book is one of the finest bike-trip travelogues ever written – but the wide-ranging reflections spurred by long hours on the road make her memoir a great read even for people with no interest in cycling.

Ironically, Harris’ deep dive in this earthly environment – via a months-long ride on the Silk Road and through Tibet – resulted from her growing disenchantment with an extra-terrestrial itinerary. A childhood dream of becoming a Mars-bound astronaut led to a stellar academic career, with a Rhodes scholarship to Oxford and admission to a PhD program at MIT.

It wasn’t the difficulty or the danger of a Mars mission that put her off. Rather, a summer-long Mars simulation exercise in the Utah desert brought an unbearable sense of separation:

As four crewmates and I trundled around Utah in canvas spacesuits, I found myself disconcerted by the fact that when I gazed at a mountain, I saw a veneer of Plexiglas. When I reached out to touch canyon walls the colour of embers, I felt the synthetic fabric of my glove instead of the smooth, sun-warmed sandstone. As all kinds of weather howled outside my spacesuit, I heard either radio static or my percussive panting amplified in the plastic helmet, like I was breathing down my own neck.”

Giving up the dream of going to Mars wasn’t easy. “The first sign of doubt is a renewed fanaticism,” she observes, and she threw herself into preparatory work doing a master’s degree at Oxford followed by graduate work in windowless labs at MIT. Eventually, though, she could not resist the urge to clear her head by going for a bike ride with her long-time friend Melissa – a 10,000 km ride, from Turkey to Tibet, through snowstorms, days of winter rains, against fierce winds on plateaus higher than any mountain peak in North America, across baking deserts and into teeming cities.

Her book would be superb if it merely catalogued the adventures of the road, or if it merely described her gradual coming to terms with the flaws and limitations of childhood heroes such as Marco Polo and Charles Darwin. But she also allows readers to share her sense of wonder at the lands she is visiting:

Deserts have long been landscapes of revelation, as though the clean-bitten clarity of so much space heightens receptivity to frequencies otherwise missed in the white noise of normal life. This was especially true just before dawn on the Ustyurt Plateau, when the horizon glowed and shimmered like something about to happen. As the sun rose it tugged gold out of the ground and tossed it everywhere, letting the land’s innate wealth loose from a disguise of dust. The air smelled of baked dirt spiced with dew and sage. Our bicycles cast long cool shadows that grew and shrank with the desert’s rise and fall, its contours so subtle we needed those shadows to see them. The severity of the land, the softness of the light – where opposites meet is magic.”

Blizzards, sandstorms, endless mud, these are challenges to be relished – but borders are insufferable. In spite of her success in sneaking across border checkpoints for unauthorized rides across Tibet – not once but twice – some of the borders are non-negotiable, causing long delays and major changes in route. With enough time for reflection, however, even these borders help her to deeper understandings:

Whether buttressed with dirt roads or red tape, barbed wire or bribes, the various walls of the world have one aspect in common: they all posture as righteous and necessary parts of the landscape. That we live on a planet drawn and quartered is a fact most Canadians have the luxury of ignoring, for our passports open doors everywhere – with the notable exception of Central Asia, where North Americans face the kind of suspicion and resistance would-be tourists from Uzbekistan get from Canada ….”

Is there a recipe for a successful bike trip across a remote continent? Kate Harris would likely say that’s the wrong question. It doesn’t matter how far away, how exotic, how difficult or how long your journey is, it only matters that you throw yourself into the experience:

Departure is simple: you step out the door, onto your bike, into the wind of your life. What’s hard is not looking back, not measuring gain or loss by lapsed time, or aching legs, or the leering kilometre markers of ambition. You are on your way when you decipher the pounding of rain as Morse code for making progress. You are getting closer when you recognize doubt as the heaviest burden on your bike and toss it aside, for when it comes to exploring, any direction will do. You have finally arrived when you realize that persistent creak you’ve been hearing all this time is not your wheels, not your mind, but the sound of the planet turning.”


Illustration at top adapted from “Lands of Lost Borders Highlights Reel” video, viewed via

More than one way to fall off a cliff

Also published at

Wonkometer Warning MH-225The “energy cliff” is a central concept in ecological economics, and it’s based on a very simple ratio. But for me this principle was a slippery thing to grasp, and I eventually realized some of the most common graphs used to illustrate the Energy Cliff were leaving me with a misleading mental image.

This column takes a closer look at Energy Return on Energy Invested (ERoEI, EROEI or simply EROI) and the Energy Cliff, concluding with the question of how and whether the Energy Cliff might be experienced as a historical phenomenon.

The Energy Cliff as a mathematical function

Below are two frequently used versions of the Energy Cliff graph, based on the pioneering work of Charles Hall. They illustrate the relationship between Energy Return on Energy Invested and the percentage of energy production that is “surplus”, i.e., not needed by the energy sector for its own work and therefore available for use by the rest of society.

Chart accessed via

Chart accessed via

Chart from Tim Morgan, Life After Growth, Kindle edition, locus 980

Chart from Tim Morgan, Life After Growth, Kindle edition, locus 980

In each case the EROEI is shown on the horizontal axis with lowest values at the right. The apparent suddenness of the drop-off in surplus energy depends on the relative scales of the axes and maximum value shown for EROEI, but in each case the drop-off becomes nearly perpendicular as EROEI falls below 10 – thus the name “Energy Cliff”.

Simple enough, eh? But after seeing this graph presented in several books and essays, I still found the concept hard to master. I kept asking myself, “How does that work again?” or “Why does energy supply drop off so suddenly?”

The problem, I realized, is that the impression these graphics leave in my mind is at odds with the intent. As these examples show, the “Energy for society” or “Profit energy” dominates the graphic visually, and the “Energy used to procure energy” or “Cost energy” seems like such a small sliver that it couldn’t possibly be that important. Mathematically naïve as that impression may have been, it nevertheless made it difficult for me to retain a clear understanding of the Energy Cliff.

The solution for me was to play with the graph until I felt I understood it clearly, using imagery that reinforced the understanding.

It was most helpful, I found, to present the graph not as an unbroken continuum between the two variables, but as a bar chart showing discrete values of Energy Return on Energy Invested: 1, 2, 3, 4, etc up to 50.

The Energy Cliff as a Bart Chart

Visualizing the numbers this way minimizes the tendency to see the surplus energy, or Net energy output, as one massive block. Just as importantly, it allowed me to easily focus on the relationship between specific values of Energy input and Net energy output.

For example, at the far right end of the graph is the ERoEI value 1. This corresponds to a bare break-even scenario. An oil well with this ERoEI would not be worth drilling: we would use up one barrel of oil to drill and operate the well, and it would spit out exactly one barrel in return, leaving us with no surplus energy for our efforts.

An ERoEI of 2 corresponds to a Net energy output of 50%. To return to our Proverbial Oil Corp., we burn one barrel of oil to drill and operate a well, and the well spits out two barrels, leaving us with a net gain of 1 barrel or 50% of the Total energy output.

Our oil wells with ERoEI of 3 give us 3 barrels total for every one we invest, for a net energy gain of 2 barrels or 66.6%, wells with ERoEI of 4 give us a net energy output equal to 75% of their total energy output, wells with ERoEI of 5 give us a net energy output equal to 80% of their total energy output, and so on.

We can also see clearly that the Energy input and Net energy output percentages change very slowly for ERoEI values above 20 – at which point Energy input is 5% and Net energy output is 95% of Total energy output).

There is another simple tweak to this chart that can vividly illustrate the sudden drop-off: animation. (And since most of us use supercomputers capable of guiding a moon mission for our morning reading, why not throw in some animation?)

The animated Energy Cliff – click chart to set in motion

The animated Energy Cliff – click chart to set in motion

By focusing attention on just a narrow range of ERoEI values at a time, this moving bar graph illustrates the fact that Net energy output changes slowly throughout most of the range, and then drops off suddenly and swiftly.

The animated graph relies on the element of time as a key facet of the presentation. That begs the question: can the Energy Cliff chart be read as a function of time?

The Energy Cliff as a historical phenomenon

It is easy to look at the Energy Cliff graphic as a chronological progression, given the convention of viewing timelines with past on the left and future on the right. That would be a mistake – there is no element of time in the chart – but it might be a useful mistake if made consciously.

It’s true that ERoEI rates have been declining slowly for the past 50 years, and many new energy technologies today have ERoEI rates of 10 or lower. And in fact, the Energy Cliff chart is sometimes presented as evidence that an impending energy crisis is mathematically inevitable. While that would be an unwarranted extrapolation from a graph of a simple exponential curve, it isn’t hard to cherry-pick data that graphs to a shape similar to the Energy Cliff.

Consider the following table of ERoEI rates over time.

Selected ERoEI rates over time

This table starts with EROEI rates before the industrial age, and finishes with rates that could plausibly represent the collapse of industrial society. When graphed these numbers show a drop-off much like the Energy Cliff, with the addition of a steep slope going up at the outset of industrial civilization. The values are roughly scaled chronologically, to represent the length of time during which very high EROEI prevailed – basically, the 20th century.

Net Energy over time - chart 1 copy


The numbers cherry-picked for this chart include, crucially, an EROEI for photovoltaic panels in Spain as calculated by Charles Hall and Pedro Prieto, which was the subject of spirited discussion recently on Resilience. At 2.45, this EROEI is far below the level needed to support a highly complex economy. If this number is correct and turns out to be representative of photovoltaics more generally, then the scenario suggested in the above chart is plausible. As high EROEI petroleum sources are depleted, we turn to bottom-of-the-barrel resources like tar sands, and then to solar panels which are even less energy-efficient. Complex industrial society soon collapses, and the vast majority of us must return to the fields.

For a very different picture, we could use the EROEI for solar panel installations presented by Ugo Bardi in Resilience, from a study by Bhandari et al. In this view, photovoltaics in Spain have an EROEI of 11–12, safely out of the drop-off zone of the Energy Cliff. In this scenario we’d have no need for last-ditch fossil fuels from tar sands, solar panels would produce enough surplus energy to create more solar panels and keep industrial society rolling cleanly along, and the Energy Cliff would be a mathematical function but not a historical reality.

Net Energy over time - chart 1 copy


These two charts are equally over-simplified, ignoring other renewable resource energy technologies with widely varying EROEI rates such as hydro-electric generation. It’s unknown how long we might stretch out the dwindling supply of high-EROEI fossil fuels, or whether there will be a collective decision to clamp down on carbon emissions and leave fossil fuels in the ground. And I’m unqualified to make any judgment on whether the Hall/Prieto or the Bhandari assessment of photovoltaics is most realistic.

In presenting these two different charts I merely want to illustrate that while the Energy Cliff graph of a mathematical function is simple and direct, extrapolating from this simple function to forecast historical trends is fraught with uncertainty.

Top graphic: “The Fool” in the Rider-Waite Tarot deck dances gayly at the edge of a precipice.


Tractor-trailers hauling oil and water on North Dakota highway.

‘Are we there yet?’ The uncertain road to the twenty-first century.

Also published at

What made the twentieth century such a distinctive period in human history? Are we moving into the future at an ever-increasing speed? What measures provide the most meaningful comparisons of different energy technologies? Is it “conservative” to base forecasts on business-as-usual scenarios?

These questions provide handy lenses for looking at the work of prolific energy science writer Vaclav Smil.

accounting_for_energy_1Smil, a professor emeritus at the University of Manitoba, is not likely to publish any best-sellers, but his books are widely read by people looking for data-backed discussion of energy sources and their role in our civilization. While Smil’s seemingly effortless fluency in wide-ranging topics of energy science can be intimidating to non-scientists, many of his books require no more than a good high-school-level knowledge of physics, chemistry and mathematics.

This post is the first in a series on issues raised by Smil. How many posts? Let’s just say, to use a formulation familiar to anyone who reads Smil, that the number of posts in this series will be “in the range of an order of magnitude less” than the number of Smil’s books. (He’s at 37 books and counting.)

The myth of accelerating change

In early 2004, I wrote a newspaper column with the title “Got Any Change?” Some excerpts:

Think back 50 years. If you grew up in North America, people were already travelling in cars, which moved along at about 60 miles per hour. You lived in a house with heat and running water, and you could just flick a switch to turn on the lights. You turned on the TV or radio to get instant news. You could pick up the phone and actually talk to relatives on the other side of the country.

For ease of daily living and communication, things haven’t changed much in the last 50 years for most North Americans.

My grandparents, by contrast, who grew up “when motorcars were still exotic playthings”, really lived through rapid and fundamental changes:

The magic of telephone reached into rural areas, and soon my grandparents adjusted to the even more astonishing development of moving pictures, transmitted to television sets in the living room. The airplane was invented about the time my grandparents were born, but they lived long enough to fly on passenger jets, and they watched the live newscasts as astronauts landed on the moon. (“Got Any Change?”, in the Brighton Independent, January 7, 2004)

As it turns out Smil was working on a similar premise, and developing it with his customary authority and historical rigor. The result was his 2005 book Creating the Twentieth Century: Technical Innovations of 1867-1914 and Their Lasting Impact. This was the first Smil book I picked up, and naturally I read it while basking in the warm glow of confirmation bias.

In the course of 300 pages, Smil argues that many world-changing technologies swept the world in the twentieth century, but nearly all of them are directly traceable to scientific advances – both theoretical and applied – during the period 1867 to 1914. There is no other period in world history so far, he says, in which so many scientific discoveries made their way so rapidly into the fabric of everyday life.

Most of [these technical advances] are still with us not just as inconsequential survivors or marginal accoutrements from a bygone age but as the very foundations of modern civilization. Such a profound and abrupt discontinuity with such lasting consequences has no equivalent in history.

For anyone alive in North America today, it’s easy to take these advances for granted, because we have never known a world without them. That’s what makes Smil’s book so valuable. In detail and with clarity, he outlines the development of electrical generators, transformers, transmission systems, and motors; internal combustion engines; new industrial processes that turned steel, aluminum, concrete, and plastics from scarce or unknown products into mass-produced commodities; and the ability to harness the electromagnetic spectrum in ways that made telephone, radio and television commercially feasible within the first few decades of the twentieth century.

Ship docked at St. Mary's Cement plant at sunset.

The Peter R Cresswell docked at the St. Mary’s Cement plant on Lake Ontario near Bowmanville, Ontario. The plant converts quarried limestone to cement, in kilns fueled by coal and pet coke. Photo from July, 2015.

Energy matters

There is a good deal in Creating the Twentieth Century on increasingly efficient methods of energy conversion. For example, Smil writes that “Typical efficiency of new large stationary steam engines rose from 6–10% during the 1860s to 12–15% after 1900, a 50% efficiency gain, and when small machines were replaced by electric motors, the overall efficiency gain was typically more than fourfold.”

But I found it odd that Creating the Twentieth Century gives little ink to the sources of energy. Smil does note that

for the first time in human history the age was marked by the emergence of high-energy societies whose functioning, be it on mundane or sophisticated levels, became increasingly dependent on incessant supplies of fossil fuels and on rising need for electricity.

Yet there is no substantial examination in this book of the fossil fuel extraction and processing industries, which rapidly became (and remained) among the dominant industries of the twentieth century.

Clearly the new understandings of thermodynamics and electromagnetism, along with new processes for steel and concrete production, were key to the twentieth century as we knew it. But suppose those developments had occurred, but at the same time only a few sizable reservoirs of oil had been discovered, so that petroleum had remained useful but expensive. Would the twentieth century still have happened?

Perhaps we shouldn’t blame Smil for avoiding a counterfactual question about epochal changes a century and more ago. After all, he has devoted a great deal of attention to a more pressing quandary: how might we create a future, with the scientific knowledge that’s accumulated in the past century and a half, while also faced with the need to move beyond fossil fuel dependence? Can we make such a transition, and how long might it take? We’ll move to those issues in the coming installments.

Top photo: Trucks hauling crude oil and frac water near Watford City, North Dakota, June 2014.

The Conquest of a Continent

A review of

The Conquest of a Continent

Siberia & The Russians

by W. Bruce Lincoln, Random House, 1994
Originally published in 1994

Siberia and Canada have much in common by way of geography and history. Europeans were first attracted to both regions by the lustrous furs to be taken in the taiga, tundra and boreal forests. In each case, trappers and traders soon proved it possible to deplete animal populations, even in seemingly limitless regions, unless attention was paid to conservation. In the ensuing centuries, prospectors in both countries found precious minerals, heavy metals, and petroleum in the most inhospitable of locations, spurring engineers to learn about permafrost, meltwater bogs, and shifting ice floes.

In both countries, colonizers have overwhelmingly clustered in a narrow band along the southern borders. Finally, the ways of the peoples who have made the northern lands their homes for millenia have been generally ignored by the newcomers.

If Siberians and Canadians have a great deal to learn from each other, there was little opportunity for contact for most of this century. But in the last few years, many Canadian companies with experience in resource extraction and arctic construction techniques have been welcomed in Siberia, while travelling delegations of native peoples have shared perspectives on preserving their cultures in an industrial age.

With these new opportunities for interchange, a familiarity with Siberia’s history is essential to many people. W. Bruce Lincoln’s new book tells part of this story ably, although Lincoln gives us only fleeting glimpses of the native peoples of Siberia, and almost no sense of how their cultures fare today or how they have contributed to Siberia’s history.

Lincoln’s opening sentence provides a controversial if succinct interpretation of history: “Nations are born of battle, and conquest makes them great.” The gory opening chapters on the Mongol armies, who exited history’s centre stage as quickly as they entered, may lead some readers to conclude that the book will equal the average action movie in its insights into the human condition.

Deeper into the book, however, Lincoln rounds out the story, even though the tales for the most part remain chilling. We learn about the slow progress of Siberian industry, as hundreds of thousands of workers carve railways through mountains and dig mineshafts in rock-hard permafrost. Lincoln weaves together many threads of political economy, to illustrate how the maneuverings of empire-building politicians in Europe often resulted in the starvation of prisoners thousands of miles away.

With only a few brief exceptions, each brutal regime seemed to beget an even more brutal regime, until the Bolsheviks, desperate to create an industrial colossus out of the reach of rival armies, sacrificed forced labourers by the hundreds of thousands. In the process, land and people suffered equally: “Siberia’s Soviet masters had transformed the fragile ecology of the tundra and taiga . . . into some of the most noxious surroundings on earth.” While Russia’s most recent rulers are seeking technical help to make Siberian industry more productive, the whole world, and especially the circumpolar countries, have an interest in helping Siberian industry clean up its act.

Lincoln’s book relates hundreds of tales of conquest in Siberia, but very little that could pass for greatness. With a lot of luck, perhaps the greatness will yet come.

Review originally published in the 150th Anniversary Edition of the Globe & Mail, March 5, 1994.

Inuvik History

Inuvik History Project

In 2006 I was approached by Dick Hill, the first mayor and long-time resident of Inuvik, Northwest Territories, to work with him in transforming his extensive notes and photos into a history of the community. The result was a two-volume set published in July 2008 and launched at the community’s 50th Anniversary celebration.

My role included writing and editing, research in digital photo archives from Ottawa and Yellowknife, scanning and touch-up of photos and slides, design, layout, and liaison with the printer.

Inuvik: A History is approximately 240 pages, with a selection of photos, maps and illustrations in black and white. Inuvik In Pictures is 48 pages, with full colour pictures throughout.

Below: front and back cover of Inuvik: A History

Cover photographs for Inuvik: A History

Front Cover, top, Inuvik from the air, 1995, photo by Staffan Widstrand/Corbis; Olympic skiers Sharon & Shirley Firth, photo by Dick Hill; loading gravel at Twin Lake gravel pit, 1955, photo by Curt Merrill; RCMP officer Gerry Kisoun, photo by Raymond Gehman/Corbis. Back cover photographs show the ‘Ice Worm’ Carnival, 1960s, photo by Dr. Norris Hunt; and author Dick Hill.

Below: front and back cover of Inuvik In Pictures


Cover photographs for Inuvik In Pictures:

Front Cover, top, raising the first large warehouse, 1956, photo by Curtis Merrill. Bottom left: Prime Minister and Mrs. Diefenbaker in Inuvik, 1961, NWT Archives. Bottom centre: civil servant housing, photo courtesy of Dr. N.E. Hunt Collection, Inuvik Centennial Library. Bottom right: Bill Nasogaluak at the Great Northern Arts Festival, 1992, photo by Tessa Mcintosh, NWT Archives.
Back Cover photographs: top row, left to right, Johnny Semple; Peggy Curtis; Nap Norbert; Cece McCauley; Rose Anne Allen. Second row, Cynthia Hill; unidentified; Martha Kupfer; unidentified. Third row, Billy Day, Doug Billingsley, Diane Baxter. Fourth row, Peter Clarkson, Victor Allen. Fifth row, Louis Goose.

The Arctic Grail

No oil slicks on the carpet, please

Launching Pierre Berton’s The Arctic Grail

Originally published in November, 1988

As photo opportunities go, the book launch for Pierre Berton’s The Arctic Grail was one of the most elaborate in publishing history. As arctic voyages go, the trip to a Beaufort Sea oil rig was somewhat less demanding than picking up Berton’s tome for an armchair expedition.

The Arctic Grail is an account of the romantic age of arctic exploration. Nineteenth-century audiences snapped up reports of their heroes fighting bitter blinding blizzards over vast uninhabited ice fields.

But a warm sun rose in a clear sky as two helicopters left Inuvik, 350 kilometres north of the Arctic Circle. As we flew north over the Mackenzie Delta, three-metre spruce gave way to one-metre scrub willow; soon we saw only lichens and lakes, and it seemed we were far from civilization.

The illusion was dispelled when we reached Tuktoyaktuk – Inuvialuktun* for “looks like caribou.” Herds of oil tanks flanked a winding shoreline, dwarfing the houses, the Catholic Church, even The Bay.

Berton closes his saga in 1909, when the motor age was just beginning. Eighty years later, prospectors are staking claims at the ends of the earth, oil companies are pumping gas from beneath the ice pack, and 20,000 horsepower icebreakers are making test runs through the Northwest Passage.

If thirst for petroleum sparked new interest in the north, it also made Berton’s book launch possible – the author and most of his entourage were escorted from Calgary by Gulf Canada Resources Limited. When the helicopters set us down on a deck 40 nautical miles from shore, our hosts began a tour of the Molikpaq oil rig.

Here came the day’s moment of high adventure – a crane lifted a dozen of us over the water to a tug boat. We stood on a swinging two-metre ring, clutching a rope rigging, while sparkling waves bobbed beneath us – more fun then the CNE**, and absolutely free. Gulf employees patiently followed photographers’ directions to put Berton in just the right position for the cameras.

Several hundred blinks of the shutter later the party was reunited in the dining hall, where we toasted our exploits with Carl Jung De-alcoholized Wine – the town of Tuktoyaktuk and Gulf’s northern facilities being “dry” zones.

Early explorers in Berton’s account were too stubborn to follow Inuit advice: “Could any proper Englishman traipse about in ragged seal fur, eating raw blubber and living in hovels made of snow?” They caught chills when their wool uniforms got sweaty, and suffered scurvy because they cooked the vitamins out of their meat.

As guests of Gulf we had no such worries. We filed past the fresh salad bar in stocking feet (no oil slicks on the carpet, please), and our musk-ox and caribou were served well-done.

Written during a stint as reporter for the Inuvik Drum, and published in NOW, Toronto, November 17, 1988.

* The original version stated “Inuktitut”, the more general name for Inuit languages, instead of “Inuvialuktun”, the language of the Inuvialuit of Canada’s western arctic region.

** CNE = Canadian National Exhibition, known to generations of Toronto youngsters for its amusement park rides.