Healthy, peaceful and more equitable – life in the low-car city

Also published on Resilience

“For as long as humans have been living in cities, and until only recently, streets were the main site where children grew up,” write Melissa Bruntlett and Chris Bruntlett, in the opening pages of their new book Curbing Traffic: The Human Case for Fewer Cars in Our Lives. 

Curbing Traffic is published by Island Press, June 2021.

Unfortunately city streets in the twentieth century became unsafe spaces for humans, especially young humans, when so much prime urban real estate was ceded over to cars. The Bruntletts discuss the negative effects of car culture for children, for care-givers, for social cohesion, for social justice, for mental health, for the ability of the elderly to age in place – plus the positive effects in these realms when urban planners carefully and sensibly curb traffic.

In a previous book, Building The Cycling City: The Dutch Blueprint for Urban Vitality (reviewed here), the Bruntletts described the policies and practices that have transformed cities throughout the Netherlands and have turned the nation into a world leader for active transportation. Their new book deepens the analysis from a distinctive personal perspective: two years ago the couple and their two children moved from Vancouver, British Columbia to the Dutch city of Delft.

Visitors to the Netherlands are rightly amazed at the extensive network of dedicated bike lanes which go to every section of every city, as well as through the countryside. But just as importantly, the Bruntletts explain, is how the Dutch deal with myriad residential streets that do not have dedicated bike lanes: these streets must be safe for human interaction, whether that means kids playing games or biking to school, neighbours standing and chatting, elders strolling along while admiring gardens.

“The Dutch Blueprint for Urban Vitality” isn’t really about bicycles. It’s about refusing to sacrifice vast amounts of the public realm to the private automobile; instead reserving space for commerce, community, and social connection. The ubiquitous bicycles are simply a by-product of that larger process; a tool to achieve the end goal of what policy makers call an autoluw (low-car or nearly car-free) city.” (Curbing Traffic, page 4)

Where Building the Cycling City focused on the freedom to bike safely, Curbing Traffic pays more attention to the benefits of a low-car city for those who are not, at any given time, on bikes.

The Child-Friendly City

It starts with children.

Historians of the cycling revolution in the Netherlands cite the key role of the “stop de kindermoord” – stop the child-murders – protest movement nearly fifty years ago. Alarmed and outraged by the ongoing tragedy of children being struck down by motorists, Dutch citizens began what would become a far-ranging reclamation of street space.

Fittingly, the first chapter of Curbing Traffic is entitled “The Child-Friendly City”. Prior to the automobile era, the Bruntletts write, urban children could take care of themselves for hours every day, playing on the street close to home within sight of a parent or trusted neighbours.

The dominance of cars turned that safe space into a violent space. In the words of University of Amsterdam geographer Dr. Lia Karsten, in most cities “cars occupy the street and the space in front of the house. What we see is parents are more afraid because of the danger of motorized traffic. This danger is directly in front of the house, which should be one of the safest places for children.”

Making residential streets safe again for children has involved a complex of modified street  design, driver-responsibility laws, and strong social norms that tell drivers they are guests on these streets. Dutch streets have become, once again, places for socializing for people of all ages. And because the safe space starts right outside most urbanites’ front doors, children can take off on their own to bike to school, to sports fields, libraries and stores.

The success of the famous Dutch cycling lane network, then, depends on people of all ages being able to safely navigate their neighbourhood streets before reaching the cycle lanes along major roads.

Care is essential

Child care is one important type of care work, and the freedom to let children play outside on safe streets is itself liberating for child-caregivers, who tend to be women. That is one advantage a low-car city has in becoming a feminist city, but there is more.

Curbing Traffic notes that historically the traffic planning profession has considered “work” to mean paid work, which in turn has emphasized commuting to full-time jobs away from home. Planners have focused on facilitating these longer-distance commuting trips, which happen once at the beginning of the work day and once at the end.

Care-givers, on the other hand, typically engage in many shorter trips – to a day-care centre, grocery store, or children’s after-school activities. These trips, which often add up to more kilometres per day than a bread-winner’s commuting, are ignored in many traffic planning studies. (“The Canadian census, for example, only asks about journey to work data, as do countless other countries,” the Bruntletts write.) When these trips are made by a care-giver who also works a paid job, they often involve detours on the trip to or from a paid workplace – “trip-chaining.”

Even in cities which are now putting significant resources into cycling infrastructure, the focus is often on the type of major-thoroughfare bike lanes used by bike commuters to get far beyond their own neighbourhood. (As an example, the Bruntletts discuss new cycling infrastructure in their former home city, Vancouver. See also my discussion of the “cycle super-highways” in London, UK, here.)

In most Dutch cities, by contrast, many short trips that go along with care work happen on streets that are just as quiet, relaxed and safe as the dedicated cycle lanes are. That is one important reason that in the Netherlands, in strong contrast to most industrialized nations, the urban cycling population is more than half women.

Car noise makes us sick

The air pollution caused by motor traffic is frequently discussed, for good reason. Less understood, the Bruntletts write, is the pervasive effective of noise pollution caused by motor traffic:

“While air and water pollution tend to receive the most attention from environmentalists, noise is, in fact, the pollutant that disturbs the greatest number of people in their daily lives. It is a universal stressor, one that stimulates the fight-or-flight response in virtually all animals. An astonishing 65 percent, or 450 million Europeans reside in dwellings exposed to levels above 55 decibels, the amount the World Health Organization (WHO) deems unacceptable.” (Curbing Traffic, page 92-93)

The noise falls into two primary categories, propulsion noise and rolling noise. The arrival of electric vehicles, with their silent engines, should significantly reduce propulsion noise. Rolling noise – caused by the friction of tires on surfaces – goes up dramatically with vehicle speed, and is not ameliorated by electric motors. Unfortunately, Curbing Traffic notes, rolling noise is trending worse, “as the automobile industry continues to push out larger and heavier vehicles, which also require wider tires.”

Constant motor traffic noise, which reminds our senses that streets are dangerous places, stimulates a flow of “fight-or-flight” hormones and contributes to stress. This happens whether or not we are “used to the noise.” In the words of Dr. Edda Bild, a soundscape researcher at McGill University, “People who live in big cities are used to the churning sounds of passing cars. But just because we don’t perceive it, doesn’t mean our body isn’t having a physiological response to what’s happening.” As with air pollution, noise pollution tends to be worst in low-income and otherwise disadvantaged neighbourhoods.

The ill health effects associated with the pervasive presence of noisy, dangerous vehicles go beyond the physical to the mental. Canadian neuroscientist Robin Mazumder summarizes what urban planners can do to help address the global mental health crisis: “Primarily, we need to eliminate the threat that cars pose. Whether that’s through traffic calming or car-free streets, that’s the first thing I would target.”

Through reflections on their personal experiences and through discussions of the work of diverse urban life researchers, the Bruntletts cover far more  issues than this review can touch on. Curbing Traffic is both entertaining and deeply thought-provoking. Let’s give them the last word.

Living in Delft, they write, has shown them “what is possible when we reduce the supremacy of motor vehicles from our lives and prioritize the human experience.” They add,

“With the right leadership, traffic evaporation policies, as well as those aimed at improving social connection, reducing noise, addressing mental health and equity, and ensuring resiliency regardless of what environmental and health challenges are yet to come, cities of all sizes can provide the quality of life our family now cherishes. We understand why it is so important to have fewer cars in our lives. The critical next step starts today. Now is the time to make it happen.” (Curbing Traffic, page 218)


Photos in this post taken by Bart Hawkins Kreps in Leeuwarden, Netherlands, in September, 2018.

Going to extremes

It only took us a century to use up the best of the planet’s finite reserves of fossil fuels. The dawning century will be a lot different.

Also published on Resilience

In the autumn of 1987 I often sipped my morning coffee while watching a slow parade roll through the hazy dawn.

I had given up my apartment for a few months, so I could spend the rent money on quality bike-camping equipment for a planned trip to the Canadian arctic. My substitute lodgings were what is now referred to as “wild camping”, though most nights I slept in the heart of downtown Toronto. One of my favourite sites afforded a panoramic view of the scenic Don Valley Parkway, which was and remains a key automobile route from the suburbs into the city.

Even thirty-five years ago, the bumper-to-bumper traffic at “rush hour” had earned this route the nickname “Don Valley Parking Lot”. On weekday mornings, the endless procession of cars, most of them carrying a single passenger but powered by heat-throwing engines of a hundred or two hundred horsepower, lumbered downtown at speeds that could have been matched by your average cyclist.

Sometimes I would try to calculate how much heavy work could have been done by all that power … let’s see, 1000 cars/lane/hour X 3 lanes = 3000 cars/hour, X 200 horsepower each = the power of 600,000 horses! Think of all the pyramids, or Stonehenges, or wagon-loads of grain, that could be moved every hour by those 600,000 horses, if they weren’t busy hauling 3000 humans to the office.

This car culture is making someone a lot of money, I thought, but it isn’t making a lot of sense.

One early autumn afternoon a year later, in the arctic coastal town of Tuktoyaktuk, I dressed in a survival suit for a short helicopter trip out over the Beaufort Sea. The occasion was perhaps the most elaborate book launch party on record, to celebrate the publication of Pierre Berton’s The Arctic Grail: The Quest for the Northwest Passage and The North Pole. The publisher had arranged for a launch party on an off-shore oil-drilling platform in said Northwest Passage. As a part-time writer for the local newspaper, I had prevailed upon the publisher to let me join the author and the Toronto media on this excursion.

The flight was a lark, the dinner was great – but I couldn’t shake the unsettling impression made by the strange setting, beyond the ends of the earth. I thought back, of course, to those thousands of cars on the Don Valley Parkway alternately revving and idling their powerful engines. We must be burning up our petroleum stocks awfully fast, I thought, if after only a few generations we had to be looking for more oil out in the arctic sea, thousands of kilometers from any major population centre.

This post is the conclusion of a four-part series about my personal quest to make some sense of economics. I didn’t realize, in the fall of 1988, that my one-afternoon visit to an off-shore drilling rig provided a big clue to the puzzle. But I would eventually learn that dedicated scholars had been writing a new chapter in economic thought, and the quest for energy was the focus of their study.

Before I stopped my formal study of economics, I sought some sort of foundation for economics in various schools of thought. I devoted a good bit of attention to the Chicago School, and much more to the Frankfurt School. It would not have occurred to me, back then, to understand economics by paying attention to the fish school.

Schooled by fish

Well into the 21st century, I started hearing about biophysical economics and the concept of Energy Return On Investment (EROI). I can’t pinpoint which article or podcast first alerted me to this illuminating idea. But one of the first from which I took careful notes was an April 2013 article in Scientific American, along with an online Q & A, by Mason Inman and featuring the work of Charles A.S. Hall.

The interview ran with the headline “Will Fossil Fuels Be Able to Maintain Economic Growth?” Hall approached that topic by recalling his long-ago doctoral research under ecologist H.T. Odum. In this research he asked the question “Do freshwater fish migrate, and if so, why?” His fieldwork revealed this important correlation:

“The study found that fish populations that migrated would return at least four calories for every calorie they invested in the process of migration by being able to exploit different ecosystems of different productivity at different stages of their life cycles.”

The fish invested energy in migrating but that investment returned four times as much energy as they invested, and the fish thrived. The fish migrated, in other words, because the Energy Return On Investment was very good.

This simple insight allowed Hall and other researchers to develop a new theory and methodology for economics. By the time I learned about bio-physical economics, there was a great wealth of literature examining the Energy Return On Investment of industries around the world, and further examining the implications of Energy Return ratios for economic growth or decline.1

The two-page spread in Scientific American in 2013 summarized some key findings of this research. For the U.S. as a whole, the EROI of gasoline from conventional oil dropped by 50% during the period 1950 – 2000, from 18:1 down to 9:1. The EROI of gasoline from California heavy oil dropped by about 67% in that period, from 12:1 down to 4:1. And these Energy Return ratios were still dropping. Newer unconventional sources of oil had particularly poor Energy Return ratios, with bitumen from the Canadian tar sands industry in 2011 providing only about a 5:1 energy return on investment.2 In Hall’s summary,

“Is there a lot of oil left in the ground? Absolutely. The question is, how much oil can we get out of the ground, at a significantly high EROI? And the answer to that is, hmmm, not nearly as much. So that’s what we’re struggling with as we go further and further offshore and have to do this fracking and horizontal drilling and all of this kind of stuff, especially when you get away from the sweet spots of shale formations. It gets tougher and tougher to get the next barrel of oil, so the EROI goes down, down, down.”3

With an economics founded on something real and physical – energy – both the past and the immediate future made a lot more sense to me. Biophysical economists explained that through most of history, Energy Return ratios grew slowly – a new method of tilling the fields might bring a modestly larger harvest for the same amount of work – and so economic growth was also slow. But in the last two centuries, energy returns spiked due to the development of ways to extract and use fossil fuels. This allowed rapid and unprecedented economic growth – but that growth can only continue as long as steady supplies of similarly favourable energy sources are available.

When energy return ratios drop significantly, economic growth will slow or stop, though the energy crunch might be disguised for a while by subsidies or an explosion of credit. So far this century we have seen all of these trends: much slower economic growth, in spite of increased subsidies to energy producers and/or consumers, and in spite of the financial smoke-and-mirrors game known as quantitative easing.

The completed Hebron Oil Platform, before it was towed out to the edge of the Grand Banks off Newfoundland Canada. Photo by Shhewitt, from Wikimedia Commons.

The power of the green frog-skins

John (Fire) Lame Deer understood that though green frog-skins – dollars – seemed all-important to American colonizers, this power was at the same time an illusion. Forty years after I read Lame Deer’s book Seeker of Visions, the concepts of biophysical economics gave me a way to understand the true source of the American economy’s strength and influence, and to understand why that strength and influence was on a swift road to its own destruction.

For the past few centuries, the country that became the American empire has appropriated the world’s richest energy sources – at first, vast numbers of energy-rich marine mammals, then the captive lives of millions of slaves, and then all the life-giving bounty of tens of millions of hectares of the world’s richest soils. And with that head start, the American economy moved into high gear after discovering large reserves of readily accessible fossil fuels.

The best of the US fossil energy reserves, measured through Energy Return On Investment, were burned through in less than a century. But by then the American empire had gone global, securing preferred access to high-EROI fossil fuels in places as distant as Mexico, Saudi Arabia and Iran. That was about the time I was growing to adulthood, and Lame Deer was looking back on the lessons of his long life during which the green frog-skin world calculated the price of everything – the blades of grass, the springs of water, even the air.

The forces of the American economy could buy just about anything, it seemed. But dollars, in themselves, had no power at all. Rather, biophysical economists explained, the American economy had command of great energy resources, which returned a huge energy surplus for each investment of energy used in extraction. As Charles Hall explained in the Scientific American interview in 2013,

“economics isn’t really about money. It’s about stuff. We’ve been toilet trained to think of economics as being about money, and to some degree it is. But fundamentally it’s about stuff. And if it’s about stuff, why are we studying it as a social science? Why are we not, at least equally, studying it as a biophysical science?”4

The first book-length exposition of these ideas that I read was Life After Growth, by Tim Morgan. Morgan popularized some of the key concepts first worked out by Charles Hall.5 He wrote,

“Money … commands value only to the extent that it can be exchanged for the goods and services produced by the real economy. The best way to think of money is as a ‘claim’ on the real economy and, since the real economy is itself an energy dynamic, money is really a claim on energy. Debt, meanwhile, as a claim on future money, is therefore a claim on future energy.”6

The economic system that even today, though to a diminishing extent, revolves around the American dollar, was built on access to huge energy surpluses, obtained by exploiting energy sources that provided a large Energy Return On Investment. That energy surplus gave money its value, because during each year of the long economic boom there was more stuff available to buy with the money. The energy surplus also made debt a good bet, because when the debt came due, a growing economy could ensure that, in aggregate, most debts would be paid.

Those conditions are rapidly changing, Morgan argued. Money will lose its value – gradually, or perhaps swiftly – when it becomes clear that there is simply less of real, life-giving or life-sustaining value that can be bought with that money. At that point, it will also become clear that huge sums of debts will never and can never be repaid.

Ironically, since Morgan wrote The End of Growth, the dollar value of outstanding debt has grown at an almost incomprehensible pace, while Energy Return On Investment and economic growth have continued their slides. Is the financial bubble set for a big bang, or a long slow hiss?

Platform supply vessels battle the blazing remnants of the off shore oil rig Deepwater Horizon, 2010. Photo by US Coast Guard, via Wikimedia Commons.

The economy becomes a thing

When I was introduced to the concepts of biophysical economics, two competing thoughts ran through my head. The first was, “This explains so much! Of course, the value of money must be based on something biophysical, because we are and always have been biophysical creatures, in biophysical societies, dependent on a biophysical world.”

And the second thought was, “This is so obvious, why isn’t it taught in every Economics 101 course? Why do economists talk endlessly about GDP, fiscal policy and aggregate money supply … but only a tiny percentage of them ever talk about Energy Return On Investment?”

Another then-new book popped up right about then. Timothy Mitchell’s Carbon Democracy, published by Verso in 2013, is a detailed, dry work of history, bristling with footnotes – and it was one of the most exciting books I’ve ever read. (That’s why I’ve quoted it so many times since I started writing this blog.)7

As Mitchell explained, the whole body of economic orthodoxy that had taken over university economics departments in the middle of the twentieth century, and which remains the conventional wisdom of policy-makers today, was a radical departure from previous thinking about economics. Current economic orthodoxy, in fact, could only have arisen in an era when surplus energy seemed both plentiful and cheap:

“The conception of the economy depended upon abundant and low-cost energy supplies, making postwar Keynesian economics a form of ‘petroknowledge’.” (Carbon Democracy, page 139)

Up until the early 20th century, Mitchell wrote, mainstream economists based their studies on awareness of physical resources. That changed when the exploding availability of fossil fuels created an illusion, for some, that surplus energy was practically unlimited. In response,

“a battle developed among economists, especially in the United States …. One side wanted economics to start from natural resources and flows of energy, the other to organise the discipline around the study of prices and flows of money. The battle was won by the second group, who created out of the measurement of money and prices a new object: the economy.” (page 131)

Stated another way, “the supply of carbon energy was no longer a practical limit to economic possibility. What mattered was the proper circulation of banknotes.” (page 124)

By the time I went to university in the 1970s, this “science of money” was orthodoxy. My studies in economics left me with an uneasy feeling that the green frog-skin world was, truly, a powerful illusion. But decades passed before I heard about people like H.T. Odum, Charles Hall, and others who were developing a new foundation for economics. A foundation, I now believe, that not only explains our economic history, but is vastly more helpful in making sense of our future challenges.

* * *

Lame Deer’s vision of the end of the green frog-skin world was vividly apocalyptic. He understood back in the 1970s that we are all endangered species, and that the green frog-skin world must and will come to an end. In his vision, the bad dream world of war and pollution will be rolled up, and the real world of the good green earth will be restored. But he had no confidence that the change would be easy. “I hope to see this,” he said, “but then I’m also afraid.”

Today we can study many visions expressed in scientific journals. Some of these visions outline new worlds of sharing and harmony, but many visions foretell the worsening of the climate crisis, economic system collapse, ecosystem collapse, crashes of biodiversity, forced global migrations. These visions are frightening and dramatic. Are we caught up, today, in an apocalyptic fever, or is it cold hard realism?

We have much to hope for, and we also have much to fear.


Image at top of post: Offshore oil rigs in the Santa Barbara channel, by Anita Ritenour, CC 2.0, flickr.com


Footnotes

 

The marginal uselessness of muscle-cars

Also published on Resilience

Waiting at a stop-light, sitting on my bicycle while leaning against a telephone pole, ready to step down hard on the pedals, it was only natural to think about the economic concept of “marginal utility”.

I enjoyed my little game of beating fast cars through intersections after stopping for lights. Having taken up biking in downtown Toronto in the early 1980s, I quickly realized that for all the power in their absurdly oversized engines, many, perhaps most, cars could not accelerate their great bulk through an intersection any faster than an ordinarily fit cyclist could accelerate a bicycle. As long as we both started from a dead stop, and as long as I had already downshifted to a torque-maximizing low gear, and as long as I sprinted away the second the light changed, and I shifted gears smoothly at least twice while getting through the intersection, I could make it to the other side before a single car had gotten up enough speed to overtake me.

And when an aggressive driver in an expensive Camaro or BMW did beat me through the intersection, the advantage was fleeting: I would catch up and pass that car, in the typically congested city traffic, before we reached the next stoplight.

In the city traffic game, the marginal utility of each additional horsepower in a car’s engine was awfully close to zero.

All the cars on the road, whether their engines produced 70 horsepower or 370, could move far faster than a bicycle on an open road, and all of them could easily surpass the speed limits on highways. Yet they were all hard-pressed to accelerate from 1 – 20 km/h faster than a bicycle, with its human engine of less than 1/2 hp, could do.1

The marginal utility of the first 10, 20, or 50 horsepower, in pushing a car and its human passenger down the road, was significant. But the next 50 or 100 or 200 hp in a car engine accomplished very little, even on an open road – much less on the crowded city streets where these cars burned so much of their gas.

Following the magazine version in 1973 Energy and Equity was expanded into a small book, which is now available as a free download from various sources including Internet Archive, here. Quotes and page numbers cited in this article are from the Internet Archive edition, as originally published in 1974 by Harper & Row.

These musings on the intersection between physics and economics spurred me to have another look at a curious little book I’d come across a few years earlier – Ivan Illich’s Energy and Equity.

Illich was a controversial Catholic priest who eventually settled in Mexico. He published a flurry of books in the early 1970s questioning many of the most cherished practices of “first world” countries. His work was particularly popular in France, where Energy and Equity was first published by Le Monde in 1973.

I briefly attended the school Illich founded in Cuernavaca, Mexico, an experience which enriched my life and challenged my thinking in many ways. Yet Energy and Equity struck me as engagingly odd but hyperbolic on first reading, and it had little immediate impact. That changed when I started to experience city traffic from behind the handlebars instead of behind the steering wheel. Today, more than forty years later, I’m amazed at how clearly Illich summed up both the comedy and the tragedy of industrial society’s infatuation with high-powered travel.

Once I had taken up cycling, and I realized I could accomplish my daily travel routines in the big city as fast on bike as I could do in a car, Illich’s trenchant critique of car culture was no longer threatening – it was a broad beam of illumination.

Illich didn’t fall for the idea that North Americans moved around at 100 km/hr, therefore getting around 10 times as fast as our ancestors had. Instead, he looked at the immense amount of time Americans devoted to building cars, building roads, paying for cars, paying for insurance, washing cars, fixing cars, trying to find parking for cars. To find the true average speed of travel, he said, one needs to tally all the time society puts into the effort, and divide that time into the total amount travelled. Or, you could do the same on an individual basis:

“The typical American male devotes more than 1,600 hours a year to his car. He sits in it while it goes and while it stands idling. He parks it and searches for it. He earns the money to put down on it and to meet the monthly installments. He works to pay for petrol, tolls, insurance, taxes and tickets. He spends four of his sixteen waking hours on the road or gathering his resources for it. … The model American puts in 1,600 hours to get 7,500 miles: less than five miles per hour.” (page 19)

Car ads, of course, encourage us to think only of that rush of acceleration when we’re able to step on the gas – never of the time spent waiting in bumper-to-bumper traffic, never of the time we spend earning the wages that go to monthly car payments. But once I’d absorbed Illich’s way of thinking, I could understand how much time I saved by not having a car. In the mid-1980s I calculated that owning and operating a car instead of a bicycle would have cost about six weeks of my wages each year. Getting around by bike, then, meant I could take six extra weeks of annual vacations. Some hardship, eh?

A class structure of speed capitalists

My initial reactions to Energy and Equity, you may have noticed, were rather self-absorbed. They were shaped by Illich’s observations, but equally by my varying degrees of privilege. Male privilege meant I could ride the city streets at all hours without fear of sexual harassment. White privilege meant I could move around the streets openly, for years, and only once be stopped by a police officer (who gave me just a polite scolding). I took for granted the blessings of good health and the ability to find a reasonably well-paid job. Perhaps most significant, bicycling for me was a choice, and I could, if and when I chose, also rent a car, get on a train, or buy a plane ticket to fly across most of the world’s national borders.

Thus I wasn’t as quick to catch on to Illich’s more fundamental critique of car culture and the traffic-industrial complex: that the reorganization of life which affords some people the privilege of high-powered, high-speed mobility, inevitably results in many other people having less effective mobility and less free time. In Illich’s summary, “Energy and equity can grow concurrently only to a point. … Above this threshold, energy grows at the expense of equity.” (page 5)

To explain his viewpoint, Illich gave his particular definitions to three key terms: “By traffic I mean any movement of people from one place to another when they are outside of their homes. By transit I mean those movements that put human metabolic energy to use, and by transport that mode of movement which relies on other sources of energy.” (page 15)

For most of history, traffic and transit were pretty much the same. Most people got around on their own two feet using their own power. As a result people were generally capable of mobility at roughly the same speed. Ideally, Illich said, improvements in traffic should not impair the pre-existing ability of anyone to engage in transit under their own power.

Unfortunately, motorized transport has played out much differently so far. Soon after passenger trains came into use, and particularly following the introduction of motorcars, impediments to the non-passenger class began to be built into daily life. Streets became deathly dangerous to pedestrians, crossings became highly regulated, soon vast areas of cities had to be devoted to parking for the car-owning class, neighbourhoods were razed and new controlled-access highways created wide barriers between districts for those unfortunate enough to depend on foot-power. Distances became greater for everyone in cities, but the problem was worst for pedestrians, who now had to detour to find relatively “safe” road crossings.

This Google satellite view of downtown Chicago shows how infrastructure built to support high-speed travel pushes cities apart, increasing the distances that pedestrians must walk even within their own neighbourhoods. Of course, in Chicago as in all other industrialized cities, the “high-speed” infrastructure still fails to provide high-speeds when these speeds would matter most – during rush hour.

Illich was fond of a quote from José Antonio Viera-Gallo, an aide to Chilean president Salvador Allende: “Socialism can only arrive by bicycle.” By contrast, he wrote, “Past a certain threshold of energy consumption for the fastest passenger, a worldwide class structure of speed capitalists is created. … High speed capitalizes a few people’s time at an enormous rate but, paradoxically, it does this at a high cost in time for all.” (page 29)

It was possible to estimate the total time a society devoted to the construction, maintenance, and operation of traffic. In doing so, Illich found that “high-speed” societies suck up much more time than “underdeveloped” societies: “In countries deprived of a transportation industry, people … allocate only three to eight percent of their society’s time budget to traffic instead of 28 per cent.” (page 19)

On average, of course, the people in high-speed societies both need to and do travel much farther every day – but the averages conceal as much as they reveal. The well-to-do travel much greater distances than the average, but due to all the infrastructural barriers and regulations necessitated by high-speed travel, even impoverished pedestrians devote much extra time to their daily rounds. (And, just one small step up the ladder, those who need to ride buses in congested cities are held up daily while their buses crawl along behind private cars.)

The traffic-industrial complex not only restructures our cities, Illich said, but it also restructures our perceptions and our imaginations:

“The habitual passenger cannot grasp the folly of traffic based overwhelmingly on transport. His inherited perceptions of space and time and of personal pace have been industrially deformed. … Addicted to being carried along, he has lost control over the physical, social and psychic powers that reside in man’s feet. The passenger has come to identify territory with the untouchable landscape through which he is rushed.” (page 25)

Unfortunately, “All those who plan other people’s housing, transportation or education belong to the passenger class. Their claim to power is derived from the value their employers place on acceleration.” (page 53) The impetus for positive change, then, will need to come from those who still get around by the power of their own feet. In that respect, Illich argued, the bicycle is one of civilization’s greatest advances, on a par with just a few other developments:2 “Man on a bicycle can go three or four times faster than the pedestrian, but uses five times less energy in the process. … The bicycle is the perfect transducer to match man’s metabolic energy to the impedance of locomotion.” (page 60) 

Final bike-raising at the April 22, 2006 Critical Mass rally in Budapest, Hungary. From Wikimedia Commons.

Illich, it is important to note, was not a human-power absolutist. In his view, motored transport could be a very useful complement to foot-powered transit. The key, he said, was that when motorized transport remains relatively low-powered and low-speed, its advantages, for society as a whole, can outweigh the disadvantages:

“If beyond a certain threshold transport obstructs traffic, the inverse is also true: below some level of speed, motorized vehicles can complement or improve traffic by permitting people to do things they could not do on foot or on bicycle.” (page 68)

Where is that “certain threshold”? Regarding speed, Illich said that historically, the threshold was crossed when motorized speeds topped “±15 mph” (about 25 km/h). Regarding power, Illich summed it up this way:

“The per capita wattage that is critical for social well-being lies within an order of magnitude which is far above the horsepower known to four-fifths of humanity and far below the power commanded by any Volkswagen driver.” (page 8)3

For personal transportation, that “reasonable limit” on power use struck me as sensible in the 1980s, and even more so today. The VW Beetle engines of that time produced roughly 50 horsepower. Today, of course, automotive engineers know how to get far more efficient use out of engines, even though they mostly use that increased motive efficiency simply to push around a much bigger and much heavier car (increased efficiency, directed to the cause of decreased efficiency). Using lighter materials, with an electric drive-train, and more aerodynamic shaping, a car with less than half the horsepower of a 1980s VW Beetle would be entirely adequate for occasional personal transportation at speeds surpassing bicycle speed. Of critical importance, a limited number of cars powered by, for example, 10–20 hp engines, might be integrated in an equitable society without sucking up absurd quantities of materials or energies.4

Almost 50 years after the first edition of Energy and Equity, some of Illich’s ideas on traffic planning have moved beyond the fringe and almost into the mainstream. Fifty years of hard work in the Netherlands, and in cities such as Copenhagen, have proven that densely populated places function more smoothly, and populations are healthier, when people of every age can walk and cycle through their cities in safety – as long as people-powered transit, not motor-powered transport, is given priority. Even jurisdictions throughout North America are now making formal commitments to “Complete Streets” with safe access for walkers and bikers, though the follow-through is usually far behind the noble ideals.

But as to the amount of energy that average people should harness, and the desirability of “time-saving high-speed travel”, the spell that Illich tried to break has scarcely loosened its grip. Mainstream environmentalism, while advocating a swift and thorough transition to zero-carbon technologies, clings to the belief that we can, will, indeed, we absolutely must retain our high-speed cars and trains, along with the airliners which whisk us around the world at nearly the speed of sound. Nobody knows how we’ll manage some of the major parts of this transition, but nearly everyone “knows” that we’ll need to (and so we will) convert our entire traffic-industrial complex to green, clean, renewable energy.

Illich has been gone for nearly 20 years, but I think he’d say “Wake up from your high-speed dream – it’s a killer!”

* * *


At the outset of this series, I discussed my personal, winding journey to an appreciation of biophysical economics. Ivan Illich is not considered a biophysical economist, or an economist of any stripe, but he played an important role for me in focusing my attention on very simple facts of physics – simple facts that have profound implications for our social organization. In the next installment, we’ll look at energy issues in a different light by examining the way European colonizers embarked on a systematic, centuries-long extraction of rich energy sources from around the world – well before the fossil fuel age kicked energy use into hyperdrive.

Epilogue

If in 2021 I were to replay the cyclist’s game of racing cars from a standing start through intersections, I’d have a lot more difficulty. Age is one factor: I’m a good bit closer to being a centenarian than a teenager. But it’s not only that: the average horsepower ratings of car engines have more than doubled since 19805, though speed limits have not changed substantially and city streets are generally just as congested. A big selling-point of these twice-as-powerful cars, however, is their increased ability to accelerate. Whereas the average car in 1980 took 13 seconds to go from 0 to 60 mph (96.6 km/hr), by 2010 the average car could do it in just under 9 seconds – a savings of over 4 seconds! Think of the time saved on your daily commute! Or, in busy city traffic, think of the joy of having extra seconds to wait behind the line of traffic at every stop-light. Think, in other words, of the marginal utility you’ve gained by doubling the horsepower in your car. But is your life twice as fast, twice as rich, do you have twice as much free time, as a result?

As a part-owner of a car today, I can readily see that the joke of the marginal utility of big-horsepower engines is on car buyers, and the car-makers are laughing all the way to the bank.

But as Illich saw so clearly, back in 1973, the joke of high power consumption is also a tragedy. The hyper-powered cars of today (mostly in the shape of SUVs or four-door, five-passenger “trucks”) are even more dangerous to pedestrians and cyclists than were the sedans of the 1960s.6 Energy use goes up – and equity goes down.


Photo at top of page: Mansory at Geneva International Motor Show 2019, Le Grand-Saconnex, photo by Matti Blume, from Wikimedia Commons.


Footnotes

Celebrating the cargo bike revolution

A review of Motherload

Also published on Resilience

“Do you remember when your central purpose was to explore this world with your body? The sun and the wind, your legs, your breath, the water and dirt? This is how we understood the environment, and our place in it, and what it meant to be alive.”

Liz Canning remembers that everyday thrill of childhood. She remembers when that thrill disappeared under the obligations of adulthood and motherhood, when the sun and wind receded behind the sealed windows of a car, when exploring the world meant negotiating traffic jams in frustration. And she remembers rediscovering routine, daily joy with her children when she learned about cargo bikes and she escaped the cage of her car.

That’s the backstory of the deeply inspiring film Motherload. The feature-length documentary hit the festival circuit in 2019, and in 2020 it was released for on-demand rentals and purchase on Vimeo. (Education and library licensing available here and a DVD edition is here.)

Revolutions Per Minute

Motherload features Canning’s own story and the story of many other families, but the focus and the movie’s name developed several years into the project. The movie was produced through a crowd-sourcing model, with people around the world contributing stories, pictures, video clips and funds.

When I first became aware of the project in 2011 the working title was “Revolutions Per Minute: Cargo Bikes in the U.S.” A few years later the title had morphed to “Less Car More Go.” All along Canning was learning about the many types of cargo bikes, the people around the world who were building them and using them, and the first individuals and companies in the U.S. who were designing or importing cargo bikes.

This early research pays great dividends in the movie. Canning speaks with mountain bike design legend and historian Joe Breeze, and Xtracycle founder Ross Evans. She shows us how cargo bikes developed in Central America, West Africa, Australia and the Netherlands.

In the last 10 years the cargo bike movement has grown exponentially in North America. Cargo bikes, and cargo trailers pulled by bikes, became popular with tradespeople, mobile catering services, and courier services.

“It’s the moms”

But one type of cargo bike user became an increasingly important demographic: mothers with young families. Kaytea Petro of Yuba Bicycles – by then the largest seller of cargo bikes in the US – told Canning that “Seventy-five percent of our market are women.”

Thus it made perfect sense to name the movie Motherload, and to frame the issue through a series of personal stories – Canning’s own story, and the story of many other mothers who celebrate their new-found freedom to feel wind, sun and rain along with their children.

More than a hundred years ago the bicycle played a prominent role in women’s liberation. Today, Canning says, “We are still challenging notions of gender status, physical power, safety, even our definition of high quality of life.”

Unfortunately just as the suffragettes faced a lot of abuse from men, Motherload tells us about the “mom-shaming” and the vicious misogyny that women on cargo bikes often get from male drivers. Other hurdles include a lack of safe places to ride in many neighborhoods, and the high cost of still-rare cargo bikes (though the purchase price and especially the operating costs of cargo bikes are low compared to the cost of cars). Motherload packs in many stories and a lot of information, but there is still plenty of ground in this revolution for Canning or other documentarians to cover in future films.

Director Liz Canning and her twins

“We are teaching our children to become citizens of the earth,” Canning tells us. And she quotes Rebecca Solnit: “You do what you can. What you’ve done may do more than you can imagine, for generations to come.” The film closes with an image that will tug at the heart-strings of all parents, but particularly those in bicycling families: her twins, who first explored their world from the open-air box of a cargo bike, now pedal away on their own bikes, under their own power, down their own road.


picture at top of page: Emily Finch and her six children on their dual engine mini-bus

The Hundred Years’ War for Safe Streets

Also published on Resilience.org

Should safety standards for new vehicles take into account the safety only of the inside passengers, or also the safety of others on the streets?

Right of Way, by Angie Schmitt, published by Island Press

When economic circumstances force large numbers of people who can’t afford cars to move into suburbs, should traffic policy on suburban streets still prioritize the unimpeded movement of the car owners? 

In urban areas where the population is predominantly from racialized communities, should mostly white, male engineering associations still set traffic rules?

These are some of the life-and-death questions explored in Angie Schmitt’s essential new book Right of Way: Race, Class, and the Silent Epidemic of Pedestrian Deaths in America (Island Press, August 2020). Although the focus is on the US, Schmitt also explains how and why other industrial countries have achieved far better safety records on urban streets.‡

Schmitt begins by outlining a sudden and rapid increase in traffic violence. Since 2009, Schmitt notes, there has been a 10% increase in total driving miles by Americans – but a 50% increase in pedestrian deaths. (Right of Way, page 7)

The reasons for the rise in fatalities are complex but there are obvious clues:

“There are patterns in who is killed: older people, men, and people of color are disproportionately at risk. We know what kinds of vehicles are most likely to kill: large trucks and SUVs.” (Right of Way, page 3)

Unravelling what she calls an epidemic, Schmitt visits cities around the country and explores issues of mobility justice, racial justice, economic justice and environmental justice. While most of the book deals with events of the past 30 years, she does look at key developments from a hundred years ago.

Victim-blaming and the invention of jaywalking

“In the United Kingdom,” Schmitt writes, “there is no equivalent violation to jaywalking, but the pedestrian safety record there puts the US data to shame.” (Right of Way, page 67)

Defining and prosecuting an offense called “jaywalking”, as it turns out, is not a way to protect the safety of pedestrians, but rather a way to turn street space into the privileged domain of dangerous vehicles and their drivers.

For nearly all of history, people simply crossed the road when they wanted to get to the other side. Now, however, they are expected to walk down the road, wait for permission from a traffic light, scurry across, and then walk back to their destination; they face the risk of summary execution by car if they simply cross the road when and where they’d prefer.

How did this come about? Schmitt draws on the work of historian Peter Norton (see Fighting Traffic: The Dawn of the Motor Age in the American City). During the 1920s – an era when car ownership was still relatively rare – about 200,000 Americans lost their lives to cars, and the victims were disproportionately children.

“In contrast to modern media accounts,” Schmitt writes, “the news at the time was unflinching about where to lay the blame: on drivers.” (Right of Way, page 69) Cities across the nation began to discuss serious restrictions or even bans on the passage of cars through city streets. The dominance of car culture was in doubt, and the response was a combination of political muscle by the largest industries, plus a concerted public relations campaign. The path to progress, the car companies and their spin doctors insisted, was not to restrict the movement of cars but to restrict the rights of walkers to safely cross the streets.

“One of motordom’s most critical victories was the introduction and eventual acceptance of the concept of jaywalking,” Schmitt writes. (Right of Way, page 70) She goes on to illustrate how, 100 years later, “the ideology of flow” continues to kill people, especially in economically disadvantaged and radicalized communities.

Take, for example, the important issue of installing signalized crosswalks that might give pedestrians a margin of safety at the cost of some inconvenience to drivers. The Manual on Uniform Traffic Control Devices, Schmitt writes, 

“instructs engineers that a crosswalk with a traffic signal is only “warranted” if ninety-three pedestrians per hour are crossing at the location in question. Failing that, the MUTCD states that a crosswalk with a traffic signal can be warranted if five pedestrians are struck by cars at the location in a single year.” (Right of Way, page 101)

A recent intensifying factor is the “suburbanization of poverty.” In the post-WWII era a road-building boom promoted “white flight” from US urban centers to suburbs where nearly everyone relied on cars. But in the last generation the trend has reversed. Many urban areas have gentrified and poorer residents – disproportionately black, latino and indigenous – have had to find cheaper housing in the suburbs. For example, Schmitt writes that in 1980 just 47 percent of Atlanta’s black population lived in the suburbs, but in 2010 the figure was 87 percent.

High-speed suburban arterial roads are especially deadly for people who must walk to work, walk to the grocery store, or walk to catch a bus. They are deadly for elderly people who have difficulty crossing several wide traffic lanes in the time allowed by signals programmed to minimize interruption to drivers. And these roads are especially deadly today, with a majority of new passenger vehicles that are far more dangerous to pedestrians than the cars of just 20 years ago.

Mean machines

Most environmentalists would agree that fossil fuel executives rank high on the corporate villainy scale, due to their role in sowing climate change confusion while their own scientists were secretly documenting the devastating effects of carbon emissions. But auto company executives deserve their own special place in hell. Not only did they respond to the climate crisis with a decades-long push to sell ever bigger, heavier, and therefore less fuel-efficient passenger vehicles, but they did so even as the evidence mounted that their products are far more dangerous to pedestrians.

Whereas an old-style sedan with a low front end would hit an average-height pedestrian in the legs, an SUV or recent model pick-up truck, with a much higher front end, will hit the same pedestrian in the abdomen, chest, head – or all three at once. It shouldn’t take an emergency room doctor to understand that being hit by a much taller vehicle is likely to cause much more serious internal injuries. Add to that the fact that whereas a pedestrian hit by a sedan will typically fall onto the hood of the sedan, a pedestrian hit by a much taller vehicle is likely to be literally run over, suffering more severe injuries or death even if the initial impact is survivable.

Ah, but think of the profit margin! Schmitt cites a Kelley Blue Book analysis: while even a small crossover SUV in 2017 sold for almost $9,000 more than an average midsized sedan, the production costs are almost the same. You can guess which kind of vehicle the auto industry is eager to sell.

In recent years the US auto industry has been the biggest buyer of advertising – more than $30 billion annually – and Schmitt reports that nine of the top ten advertised vehicles were SUVs or pick-ups.

The ad campaigns worked. While 83 percent of vehicles sold in the US in 2012 were sedans, Schmitt writes, by 2018 crossover SUVs had become the top-selling vehicle type.

As the sales of SUVs climbed, so did the pedestrian deaths. In the period 2010 to 2015, the odds of a pedestrian dying when hit by a vehicle jumped 29 percent.

Was this deadly trend just an unfortunate co-incidence? Not according to the National Highway Traffic Safety Administration (NHTSA); they estimated that “pedestrians struck by an SUV are two to three times more likely to be killed than those struck by a car.” (Right of Way, page 84)

The trend was also seen as causation, not mere correlation, by European lawmakers.

Schmitt writes that since 2004, the United Nations has recommended the imposition of “standards on automakers specifically to protect people outside the vehicles: pedestrians or cyclists.” In response, “the European Union imposed rules to protect pedestrians beginning in 2010.” (Right of Way, page 90)

These rules are already improving pedestrian safety in more advanced countries. In contrast to the high walls of steel at the front end of American SUVs and pickups, new European cars earning the best safety ratings have “active hood systems” which cushion the blow in a collision with a pedestrian. The result, Schmitt reports, is that pedestrians are 35 percent more likely to survive a collision.

Back to basics

Auto design, though, is just one aspect of traffic safety, and not necessarily the most important. Limiting speed is critical, since the force imparted in a collision increases non-linearly – doubling the speed quadruples the kinetic energy. Lowering vehicle speeds where pedestrians are present is thus an obvious response, if we are to believe that pedestrian lives matter.

Many cities are now lowering speed limits, especially in residential areas, and introducing other traffic calming measures. And while many tech boosters believe that autonomous vehicles will someday deliver us from traffic violence, there is already technology that can ensure that posted speed limits are effective:

“In 2019, the European Parliament ruled that by 2022, all new cars will come equipped with speed governors that physically limit the cars from exceeding the posted speed limit.” (Right of Way, page 137)

A transportation revolution must clearly be a big component of a Green New Deal. For anyone interested in exploring the many aspects of mobility justice, Right of Way is a must-read.


‡Schmitt writes that “On a population-adjusted basis, Canada, for example, loses less than half as many people on the roads every year as the United States” – which may be explained by the fact that the transit ridership share in Canada is about twice that of the US. But many issues in the book – the suburbanization of poverty, the recent predominance of high-front-end SUVs and pick-ups, the traffic policies reflected in high-speed suburban arterial roads – apply equally in Canada.

Illustration at top: The “Fearless Girl” statue stands her ground on a New York street against a Cadillac Escalade, one of the tallest of the current SUVs. This illustration was also inspired by a photo in Right of Way of a Tanzanian child who protested by sitting down in the middle of a busy street in Dar es Salaam, after a classmate was struck trying to cross that road.

The Fight for Right of Way

Confronting the legal web that enforces drivers’ privilege

Also published at Resilience.org

Why is car culture so dominant in North American life? Is it a matter of personal preference, or is it the result of extensive advertising?

Those are important factors – but University of Iowa law professor Gregory H. Shill says that auto dominance has also been cemented by a myriad of laws that favour drivers and discriminate against non-drivers.

In a new paper entitled “Should Law Subsidize Driving?” Shill writes:

“There exists a vast system of legal rules that offer indirect yet extravagant subsidies to driving, artificially lowering its price by offloading its costs onto non-drivers and society at large. Rules embedded across nearly every field of law privilege the motorist and, collectively, build a discriminatory legal structure with no name.” (Shill, “Should Law Subsidize Driving?”, 2019, page 3)

The paper discusses privileges for drivers in, among other areas, criminal law, civil liability, the method of setting speed limits and the lax enforcement of those limits, mandated dedication of public space to parking, zoning laws that favour low-density development, use of general tax revenues to cover nearly the entire costs of road construction and maintenance, and vehicle safety standards that ignore vulnerable road users.

This promotion of driving coincided with the financial interests of the largest industries – car-making and petroleum extraction – and Shill argues that it also worked to maintain racial segregation.

Far from a dry legal treatise, Shill’s paper is one of the best studies you will find of the social costs of car culture in the US. A great deal of his analysis applies in Canada as well.

Get off the road, idiot!

People in North America now take for granted that cars have the right of way on public roadways, while pedestrians and cyclists enter these streets at great personal risk. But when this grand theft by auto of public right of way was beginning, the reaction was widespread revolt.

“In cities, the contemporary reaction in the 1910s and 1920s was one of fear and outrage: whereas the street had previously been a relatively safe place for people to amble, with the tacit approval of local authorities it had in a very short period of time been transformed into a wildly dangerous place where motorists killed and maimed large numbers of people with impunity. Urban pedestrians, and especially children, suffered disproportionately. A class element predominated as well, as cars were a luxury at this time and many children killed in urban streets were poor.” (Shill, 2019, page 21)

Toronto Telegram, May 26, 1934. The lead says “KING OF THE KILLERS! Greatest menace to human life smirks at law – total penalty for thirty-one killings is merely four and one-half years in prison.”

Many people were deeply offended that well-to-do motorists not only killed pedestrians, but typically paid no or minimal legal penalties for doing so. As Shill documents, this pattern remains true today. And where regulatory remedies seemed to be called for, the response was generally to create greater legal tolerances for errant drivers.

He notes that there was a serious move to install automatic speed limiters in cars – in the 1920s – but the forces of “motordom” mobilized a campaign of public relations and legal changes. One result is that the term “jaywalking” was enshrined in law as an offense, and another is that speed limits were rapidly raised to favour heavy-footed drivers. (Though it was already clearly understood that speed kills.)

Ironclad suggestions

A new method for setting speed limits became standard across the country: the limit is set as the speed under which 85 per cent of drivers will drive on a given road in “free flowing traffic”. As Shill explains, this standard method promotes fast vehicle movement but is counterproductive to public safety:

“if the speed limit on a given residential street is 30 mph, but 85 percent of drivers travel on the road at or below 40 mph, the speed limit will be raised to 40 mph. If raising the speed limit prompts drivers to drive even faster, such that 85 percent now drive 45 mph, the speed limit will be raised again.” (Shill, 2019, page 14)

Finally, there are few places in the country where speed limits are actually enforced; rather, a wide allowance is expected and accepted by both drivers and law enforcement, such that drivers driving only five or 10 miles/hour above the speed limit are seldom ticketed.

Although technologies for automated detection and ticketing of speeders have been known for many years, this way of enforcing the law is often outlawed:

“So dissonant are social attitudes towards speed limits that some jurisdictions do not permit and in some cases expressly forbid automated enforcement of speed laws. They are ironclad suggestions.” (Shill, 2019, page 10)

Shill contrasts the systematic tolerance of speeding and other driving infractions with harsh treatment for transportation-related offenses by non-drivers.

“[T]he maximum penalty for a parking meter or HOV [High Occupancy Vehicle] lane violation is a ticket, while boarding a subway or light rail without paying can trigger not only a fine but arrest. … [D]elaying 50 bus passengers by temporarily parking in the bus lane is punishable by ticket, but boarding that same bus with an expired pass can trigger jail time.” (Shill, 2019, page 73-74)

The institution of sprawl

The widespread adoption of automobile ownership a century ago immediately created a new problem. Auto owners would not own a space in which to store their cars in all the places they might visit. As Shill notes, a free market system could have met this need through charging whatever the market would bear, in each location – but that would have imposed significant costs on motorists, thereby lessening the demand for cars.

In response, cities and states rapidly changed laws to provide free public space for the storage of cars – and in the process they redefined a common word:

“By the 1920s, city parking authorities ‘began cutting down street trees and widening streets to accommodate the volume of cars, thereby replacing the original meaning of parking as a place for trees and greenery with parking as a place for automobiles to stop.’” (Shill, 2019, page 23, quoting from Michele Richmond, The Etymology of Parking, 2015)

This free use of space, Shill notes, is not for just any use:

“street parking is reserved for cars. Try ‘parking’ a picnic table, tiny home, or above-ground pool there and you will soon discover that motor vehicles are generally the only type of private property that it is lawful to store for free on the public street. The car yields to nothing in its consumption of public subsidy.” (Shill, 2019, page 48)

Devoting a big share of residential street space to fully subsidized parking was not enough. Zoning rules across the country also mandated that new buildings – apartments, office complexes, retail developments – must also include generous amounts of parking space.

Shill discusses such zoning rules extensively, as part of a web of rules that systematically favour low-density development where regular car use is a necessary part of daily life – at great cost to public budgets, and even greater personal cost to those who can’t afford cars.

A human sacrifice every six minutes

As Shill explains, the capture of right of way by cars has always been bloody and it has always been discriminatory, since non-motorists on the roads (now termed “vulnerable road users”) are disproportionately poor and visible minorities. But of course motorists themselves also pay with their lives at a high rate.

Today in America the great majority of adults are drivers and car-owners, yet even among drivers there is a deadly class division. The American auto industry strongly favours large, heavy vehicles which sell for a much higher price and bring a much larger profit margin. The saturation advertising campaigns for these vehicles feature, on the one hand, their awesome power and their thrilling speed, and on the other hand, the extensive safety features that supposedly keep the cars’ occupants in a cocoon of security.

Ironically, though, the bigger and heavier the cars get, the deadlier are the roads – particularly for vulnerable road users, but also for drivers of smaller cars.

The auto industry originally secured a loophole for “light trucks” in order to escape fuel efficiency standards. The ubiquitous “Sport Utility Vehicle” falls into that category, and so do the hulking, four-wheel-drive, four-door pickup trucks you now see scattered through the parking lots of every suburban grocery store.

With their high front ends these vehicles kill pedestrians and cyclists at a particularly high rate. Whereas a pedestrian or cyclist struck by an old-fashioned sedan will typically be hit at the legs, and will be lifted up and onto the hood (“bonnet”) of the car, the same vulnerable road user will be hit right in the vital organ zone when struck by a “light truck”, and will likely be knocked down and run over. The result:

“Research shows that a pedestrian is 3.4 times as likely to be killed if struck by an SUV or other light truck than if hit by a passenger car.” (Shill, 2019, page 58)

But drivers of lower-priced cars also share the social costs:

“SUV-to-car crashes are also far graver. ‘In frontal crashes, SUVs tend to ride over shorter passenger vehicles, crushing the occupant of the passenger car.’ In head-on collisions with SUVs, drivers of passenger cars are between four and 10 times more likely to die than in collisions with other passenger cars.” (Shill, 2019, page 64-65, quoting from Tristin Hopper, “Big Cars Kill”, National Post, July 31, 2015)

There is no natural law that says car safety ratings should take into account only the safety of the car’s occupants while discounting the safety of other road users. In fact, in some countries the legal framework governing car design is quite different:

“The United Nations has issued a regulation designed to protect pedestrians, which had been adopted by 44 countries—many of them our peers in Europe—as of 2015. The United States has taken no action.” (Shill, 2019, page 63)

Here too, US law offloads the social cost of driving, in this case the social cost of driving high-frame vehicles, onto the general public.

There is much more in Shill’s almost book-length monograph and it is well worth a careful read. He summarizes the effect of an elaborate legal web of privilege with these words:

“The car’s needs are given priority over the right of society to health and welfare, affordable homes, and economic vitality. Car supremacy claims one human sacrifice every six minutes, bakes the planet, and enforces race and class inequality. It is not endemic because it is just, it is ‘just’ because it is endemic—and blessed by law.” (Shill, 2019, page 76)

He adds that “The task of repealing car-centric laws that justify and solidify bad outcomes is formidable. If it succeeds, it will take the labor of more than one generation.” I sincerely hope he is wrong about that timeframe.


Graphic at top of article is adapted from an anti-jaywalking poster produced by the Public Art Project of the Work Projects Administration (WPA). Students of history will recall that the WPA was a prominent job-creation agency of the New Deal. Let’s hope that the Green New Deal will not sponsor propaganda boosting continued auto dominance.

One human sacrifice every six minutes refers, of course, just to the casualties in the United States. Worldwide, about two people per minute die in traffic accidents.

A tale of three cities – cycling in Valencia, Paris and London

Also published at Resilience.org

Efforts to promote cycling are gathering steam in many cities for a wide variety of reasons. Campaigns may fly the banners of carbon emissions reductions, reducing air pollution for immediate health reasons, promotion of active lifestyles to combat obesity, creation of safer streets for non-auto-driving residents as a social justice issue, reduction of inefficient private-car usage as a way to fight gridlock – or all of the above.

On a recent trip to western Europe I had the chance to compare results of these campaigns so far.

The gold standard on a nationwide level, of course, is set by the Netherlands, the subject of the first two installments in this series (here and here). The Dutch have been working on this in a concerted way for forty years, and they are far ahead of the other countries I visited. Though I haven’t been to Denmark, my observations here are also shaped by the excellent book Copenhagenize, and addresses by that book’s author, Mikael Colville-Andersen, at two conferences I’ve had the good fortune to attend.

I was able to cycle about 100 kilometers each in Valencia and Paris, and 150 kilometers in London. But these are big cities and my rides weren’t nearly enough to cover all areas. My observations are also based on a single visit, so I’m not trying to write any sort of “report card” on how successful these cities’ recent programs have been.

Yet in observing which efforts are working well so far, which are showing promise, and which ones seem seriously flawed, I hope these reflections are of use to people in many other cities. Although our geographic and political situations vary a great deal, nearly all cities in industrial civilization have been dominated by car culture for a few generations, and we face many common challenges as we work back towards cities that are safe for everyone who could and should be moving about our streets.

Stealing bike lane space from pedestrian sidewalks

In both Valencia and Paris, I was immediately struck by the extensive use of paint-on-pavement to signal that “bikes belong here”. Any recognition of the rights of cyclists is a welcome first step. But in both cities, there were prominent examples of “cycle lanes” that did little or nothing to make streets either safe or convenient for cyclists, and instead were setting up more conflict between pedestrians and cyclists.

The core of Valencia has many wide arteries with relatively wide sidewalks as well as multiple lanes given to cars. Rather than carve some space out of the street for a protected bike lane (e.g., by eliminating a car lane, narrowing all car lanes slightly, or taking away some car parking space), planners have instead painted a bike lane on the already well-used pedestrian sidewalk.

This is quick and cheap and risks less pushback from the motorists’ lobby. But it results in terrible bike lanes, which wind and curve around light poles and bus shelters, and force cyclists to merge with pedestrians as they cross intersections and then sort themselves into separate areas on the sidewalk when they get to the other side. The pedestrians, quite naturally, amble into the painted bike lane frequently; many of them no doubt have strolled the same sidewalks for decades, and find it difficult and more than a little annoying to now keep in mind that cyclists might be whizzing by in what used to be a safe space for distracted walking.

Cycling these areas, then, is only slightly faster than walking – and cycling to work would not be an attractive option for most people with a commute of more than a kilometer or two.

Outside of the oldest central core of Valencia (where streets are very narrow and quiet) many side streets are just big enough for three car lanes plus narrow pedestrian sidewalks. Planners have so far chosen to make many of these streets one-way, with car parking on both sides. This leaves no room for a bike lane and guarantees slow movement for everybody, whether in car or on bike or on foot.

The obviously necessary  – but obviously politically challenging – course would be to take some street space back from cars and allocate it to cyclists, while preserving sidewalk space for pedestrians. This would make both walking and biking more pleasant and safe, and would promote a gradual shift to active transportation rather than reinforcing car culture.

In Paris I saw the same timid steps to create bike lanes on busy arteries without taking away any space from cars, with similar results. The wide Boulevard de Rochechouart and Boulevard de Clichy, near the train station Gare du Nord, both feature six or more lanes devoted to cars, plus a wide park-like median for pedestrians.

With such an expansive street allowance bequeathed to them by citizens from previous centuries, could planners find a sensible way to allocate a few meters for a protected bike lane? Alas, the car space has apparently been deemed sacrosanct, and bike lanes have been painted through the formerly pedestrian-only medians. Because of many obstructions in these medians, the bike lanes shift positions frequently – on one block there may be two uni-directional lanes at the outside edges of the median, while on the next there is a bi-directional bike lane in the center of the median.

Not surprisingly pedestrians wander across the bike lanes or stand there chatting or checking their phones, and the angry ringing of bike bells and the squeak of bike brakes adds new notes to the chorus of car horns. Cyclists unfamiliar with the routing must also find the shifting cycle lane after crossing each intersection, and that can be difficult to do while also dodging cars, taxis and delivery trucks. For a bicycling tourist the whole scene may be quaintly amusing, but it would not make for a pleasant or convenient ride on any regular basis.

Routes through recreational areas

Both Valencia and Paris do have new features that make cycling a very enjoyable, calm and safe activity in particular recreational or scenic areas. This doesn’t do a lot to encourage residents to take up biking for daily commutes, but it does help make the city a more attractive place in leisure hours.

A striking feature in Valencia is the major linear park through the heart of the city, occupying the shallow valley of the Turia River which was diverted in 1969. This park is now widely used by cyclists of all ages, who travel through the park to the spectacular Ciutat de les Arts i les Ciències and other attractions.

Spacious paths for cycling and walking wind through the Turia River valley (above and below). Largely free from motor traffic, these areas offer safe recreational cycling for people of all ages, within a few blocks of dense urban districts.

On the sparsely populated south-east flank of the city, there are also some excellent cycle routes connecting the core city with the port district.

Bike route near the Valencian suburb Natzaret, with Ciutat de les Arts i les Ciències in the distance at upper left.

In Paris a new initiative has been both warmly welcomed and hotly contested. In 2016, city council approved the banning of motor vehicle traffic on a formerly busy, 3.3 kilometer roadway on the “right bank” of the River Seine. (A similar roadway was closed to motor traffic along the left bank of the Seine in 2013.)

This roadway (shown in the photo at the top of this article) provides great views of and access to many of the city’s most famous sights. Popular with walkers, runners and cyclists, the spacious route has also proven an immediate hit for people taking advantage of the new dockless scooters.

Coincidentally, while I was in Paris a court decision upheld the closure of these roads to cars, allowing the city to do much more to make these important areas attractive for active, healthy and non-polluting transport.

High-profile initiatives like the Seine roadway transformation will have little direct impact on daily transportation of most Parisians, beyond those who live or work very close to these routes. To be truly effective, a good bike route network needs to connect most residents safely to most of the destinations they normally access. Yet as first steps toward that network are concerned, it would be hard to find better places for Paris to begin than on the right bank and left bank of the Seine.

Bikes and buses: a natural fit?

In several cities on my European tour I found myself riding in “bikes and buses” lanes. On one level, this makes sense: cities wanting to smooth the passage of both public transit and active transportation might do so by setting aside a lane on a main artery for the shared use of bikes and buses. With relatively little traffic in that lane the buses can move more rapidly and thus attract more users, while also giving some official encouragement to cycling.

But is a bike-and-bus lane likely to attract new cyclists, beyond those who are already willing to brave city traffic? I don’t have the numbers, but I certainly have my doubts that people who are today unwilling to ride in car traffic will feel comfortable tomorrow in sharing a lane with even bigger buses.

In my head, I can rationalize that bus drivers are trained professionals and are much less likely to be careless, drunk, or driving while texting than the average car driver. Yet after nearly 40 years of frequent biking in busy cities, I still find it a scary adrenalin rush when a full-size city bus thunders by with inches to spare and then pulls over right to the curb in front of me.

Nowhere did the “bike and bus lane” paradigm seem more obviously flawed than in central London, where buses are nearly as numerous as taxis.

As luck would have it, my route each morning and evening in London neatly coincided with one of the much ballyhooed new “cycle superhighways”. These are painted a distinctive blue, protected for significant stretches by curbs between cyclists and cars, and they extend radially out from central London.

These routes are no doubt a significant improvement for city cyclists, and I was glad to be able to ride one into the central city each day. Yet the first time I started to relax and enjoy the ride, I was shocked to suddenly find myself turfed out into a bus-and-taxi lane.

An example of the “Cycle Superhighway” suddenly merging into a lane for buses and taxis (during rush hour) and for all motor traffic (during all other hours).

For the benefit of riders who have never seen a city bus before, a yellow sign proclaims that “This bus pulls in frequently”. If you can focus on this little yellow sign while you are being abruptly cut off by a vehicle 1000 times your weight and size, you can understand perfectly what is happening.

Though these interruptions to the bike lane were only a block or two in length, they also happened several times along the five kilometers I rode the CS2 (Cycle Superhighway) each morning and evening.

I can only imagine how frightening it would be to a first-time city cyclist who might venture out on this “protected cycle lane”, perhaps with a young child following, only to find themselves suddenly dodging buses.

In this respect the Cycle Superhighways fall short of basic standards that would be followed for any cycle route along any arterial road in any Dutch city.

This is likely one reason the Cycle Superhighways have failed, so far, to attract many riders beyond the young, fit and brave cyclists who would be riding anyway, regardless of specific bike infrastructure. On the stretch of “Superhighway” I rode frequently, weaving around buses and into the general traffic lanes is a necessary skill, unless you are content to make frequent stops and then wait patiently while many passengers embark and disembark from the bus ahead of you.

On two mornings I kept a mental count of how many cyclists passed me compared to the number of cyclists I overtook. When I maintained a pace of about 20 km/h, 8 or 10 cyclists overtook me for every one that I overtook. Nearly all of them appeared to be about half my age, though there were no children riding their own bikes, and I recall seeing only one young child being carried on a parent’s bike. This, of course, was an entirely different demographic than I had become used to while riding in Dutch cities.

The cycle riding population became more varied in the central core, with many people riding the reliable and widely available, but relatively heavy and slow, bike-share bikes. These trips tend to be short, and on many core city streets traffic is moving very slowly anyway, so biking probably feels safe enough to a much wider group of people. (Not safe in every way, mind you – there were a surprising number of cyclists wearing face masks as a defense against the polluted air.)

While the most congested streets in central London see significant use by cyclists of varying age on sturdy bike-share bikes (above), bike lanes on busier arterial roads into the core are still predominantly used by young, athletic cyclists on fast bikes (below).

The limited success so far of the Cycle Superhighways brings to mind an important principle for urban programs aiming to increase the number of cyclists:

Don’t build bike lanes for those who are cycling now. Build them for people who aren’t cycling now.

Changing a car-dominated city to a place where people of all ages feel secure in routinely biking to work, school or shopping is a difficult chicken-and-egg problem. You don’t get most urban dwellers to start riding bikes until there is wide network of safe biking spaces, connecting most people to most of their common destinations. But it’s hard to get politicians to spend political capital championing the transition to safe and clean transportation, when there are so few people biking.

It’s encouraging, then, that London’s cycling-promotion efforts go far beyond the high-profile but sparse network of cycle superhighways. As discussed in the excellent short film Cycling London’s Bicycle Super Highways, there is an accompanying push to create “Quietways” throughout London’s residential areas. This program, which simultaneously calms motor traffic while creating hassle-free routes for cyclists through residential areas, has the potential to connect many residents’ homes with major arteries. And it is only when people can safely get through and out of their own neighbourhoods on bike, that significant numbers of new riders will join those already using the protected lanes along major arteries.

As Chris Kenyon of employer association CyclingWorks says in the video,

Our road system actively excludes certain groups from taking part in active transport. … we see fewer women, fewer older residents, and almost no children whatsoever, able to cycle in our streets.  We think this is an issue of social justice. … Councils need to say, if active travel is important as a health strategy for the capital, then how do we make sure it’s available to everybody?”

Iain Simmons, Assistant Director of City Transportation, is also clear that the current preponderance of fast athletic riders is not the desired long-term goal:

Ultimately, here in the city, we’re looking for something where actually everybody slows down. A good speed for vehicles and cyclists to go is about 10 miles an hour, because the differential between them, and someone who is walking along at 3 miles an hour in the pedestrian lane, is actually more easy to understand and deal with. Try and bring that civility, and that calmness, into people’s journeys.”

Traffic calming, then, is paramount. It is worthwhile recalling that even in The Netherlands, with their vast network of protected bike lanes, most urban streets neither have nor need specific cycling infrastructure; planners just need to ensure that car traffic on side streets is low speed and low volume, and then biking can become a safe and convenient option for people ages 8 to 80.

Just do it

Finally, it is important to remember that not all of the transition to safe active transportation is led by municipal officials. Much of the leadership comes from ordinary citizens, who conclude that cycling is a sensible option in spite of an almost complete lack of dedicated cycle infrastructure. This is especially true where previous reliance on private cars has resulted in daily patterns of gridlock, and bikes are just as fast or faster than cars whether bikes are promoted or not.

On my first morning in Paris I was cheered to see a great variety of cyclists out on the streets creating unsanctioned patterns of mobility: turning traffic-snarled one-way streets into contra-flow cycling lanes, for example, or detouring around stalled traffic by taking whichever lane had some free space at the moment.

The next morning I came across several signs warning that due to construction, circulation through the Bastille area was “difficult”. When I approached the massive, multi-spoked traffic circle in front of the Bastille opera house, I was startled to see cyclists weaving through the creeping chaos of tourist buses, cars, delivery trucks and motorcycles. After watching this pageant for 15 minutes or so I realized it wasn’t so difficult after all, and I got back on my bike to join the parade for a few laps. In closing, then, here is my brief tribute to the Parisian avant-garde.

When good is not enough – extending the bicycle’s reach in The Netherlands

Also published at Resilience.org

The Netherlands has a worldwide reputation as a bicycle-loving country – but bikes account for only a small proportion of kilometers travelled.

While the Dutch have given far greater official support to bicycling than other industrialized countries have, the dominance of car culture is still a fact of life in The Netherlands.

The government publication Transport and Mobility 2016 includes the section heading “The Dutch and their sacred cow” – and the authors aren’t referring to the bicycle. Rather, they note that over half of the adult population, and 71% of households, owns a car. This proportion rises to 84% of rural households, and 90% of high-income households.

Using figures from 2014, the publication states that 28% of trips made are by bicycle and 18% are by foot –  but these trips tend to be short. Overall, 73% of kilometers traveled within the country are by car, with 9% by bike, 9% by train, 3% by other land-based public transport, and 3% on foot.

What are the most promising ways to shift a significant portion of this travel to carbon-emissions-free or low-carbon modes? Trips for education only account for 7% of kilometers traveled, and 80% of Dutch students under 15 already bike to school, so additional improvement in that category will be hard to achieve.

Commuting is the biggest single category of kilometers traveled. In common with other countries, the Dutch spend a disproportionate amount on roadways to accommodate more cars. But unlike most other countries, the Dutch are also investing substantially in infrastructure that makes it possible for more people to get to work without getting into a car.

Steel wheels and rubber tires

Building the Cycling City, published by Island Press, August 2018

In their excellent work Building the Cycling City: The Dutch Blueprint for Urban Vitality, Melissa and Chris Bruntlett discuss two areas of focus in efforts to increase bicycles’ modal share. (See the first part of a look at this book here.)

Cycling is the most common form of transportation in the country for short trips – 3 to 5 km – but most commutes are significantly longer than that. Fortunately, the country has also maintained a highly effective train network, and trains and bikes are now working symbiotically.

The Bruntletts note that “the nationwide [rail] system serves over 1.2 million passengers each and every day, half of whom bookend their train travel with bicycle rides.” (Building the Cycling City, page 140)

A small infrastructure program has been essential in promoting bike-train trips. Because the train system is already well used, there is no room on trains for bikes at rush hour. Therefore people are encouraged to keep one bike at home to ride to the local train station, and another one on the other end to pedal from the train station to the workplace. (That’s one reason the country now counts more bicycles than people.)

To be secure in this practice, people need safe bike parking adjacent to all train stations. Thus you can now find bike parking facilities at every train station – for hundreds of bikes in smaller towns, thousands of bikes in small cities, or tens of thousands of bikes in bigger cities.

This covered bike-parking facility is in the northern city of Groningen, adjacent to the train station.

The most impressive of these efforts is in the southern city of Utrecht. A large university town just a short train ride away from Amsterdam, Rotterdam, Leiden and Den Haag, Utrecht boasts the country’s busiest train station. To ensure that many of the rail passengers don’t need to rely on motorized transportation to get to or from the station, the station is now the site of the world’s largest bike garage, in a complex which holds 22,000 bikes and will hold 32,000 when completed.1

A state-of-the-art bike parking garage in downtown Utrecht. Gently sloping ramps wind from the street up through the three levels of parking, and electronic signs at the ends of aisles tell cyclists where free spaces are located.

The largest of the facilities holds 12,500 bikes of standard or close-to-standard sizes, while a separate facility can accommodate delivery bikes and bakfiets – long bikes with a large box that can hold up to three children. The garages are fully sheltered from weather, are constantly monitored, and most are open 24 hours a day while some sections are open “only” from 6 am to midnight. With so many cyclists using the facilities, it also makes sense to have a service and repair shop on site.

This attention to the needs of people with bikes may sound expensive. But clearly a 12,000-bike parking facility is far less expensive in both Euros and land area than a comparable-capacity car parking garage, or the kind of bus terminal that would be required to get all those people in and out of the train station by bus. And making the bike-train combo safe and convenient pays big dividends: Transport and Mobility 2016 notes that “An inhabitant of Utrecht differs from the inhabitants of the other provinces in making the most trips as well as the most kilometres by bicycle and train.”2 (Emphasis mine.)

Electrification

During my first week in The Netherlands, I was bent over the handlebars fighting a fierce wind when an elderly woman, sitting bolt-upright in the breeze, passed me with little apparent effort. I thought, “Wow, these Dutch people are really fit!” After the same thing had happened several more times, I caught on and learned to recognize electric-assist bikes3 by their characteristic battery location.

The Bruntletts note that

“Despite its mostly flat terrain, the Netherlands has emerged as the world’s largest pedelec market per capita, with electric bikes making up almost a third of new bicycle sales in 2016. Denmark is a close second ….” (Building the Cycling City, page 50)

There is a very good reason that The Netherlands and Denmark are such good markets for electric-assist bikes: they have the infrastructure that allows safe riding on an extensive network of protected bike lanes. Citing European Cyclists Federation development director Kevin Mayne, the Bruntletts say “the places with the best bike infrastructure are the ones that sell the most pedelecs, and the global e-bike market won’t fulfill its potential without great places to ride.” (Building the Cycling City, page 87)

But with safe infrastructure and traffic conditions in place, pedelecs have the potential to get people out of cars for longer commutes, not just short rides.

Within the city of Groningen where distances are small, cycling already has a 61 percent modal share, which the city hopes to increase to 67 percent. The Bruntletts write

“What would be more impressive would be to increase the current 12 percent of people arriving by bike from outside the city …. E-bikes will play a crucial role in any such increase by lengthening the average commute distance from eight kilometres to twenty kilometres with very little additional effort from riders.” (Building the Cycling City, page 64)

Elsewhere in the country, a small network of snelfietsroutes (“fast cycling routes”) are being built between major residential and commercial centers. Designed not for scenic appeal but with the straight-forward goal of promoting efficient bike commuting from city to city, these routes also appeal to cyclists who may not be up to an athletic workout five days a week, but would still like to bike their long-ish commutes. Electric-assist bikes have already proven very popular on these inter-city routes.

In general there is no need for specific public infrastructure to support pedelecs, if there is already a comprehensive network of safe lanes for ordinary bikes. Yet the presence of charging stations could make even longer rides practical – for example, the kind of rides that would use most of the battery power on a one-way trip, requiring a re-charge before the return trip. Some employers are now providing charging stations in bike garages at work, and I spotted this station outside a popular restaurant along a well-used cycling route.4

Public bike-charging station in Stellendam, South Holland

As with parking garages, charging stations for bikes take up much less space than charging stations for an equivalent number of cars. And since e-bikes consume far less energy than e-cars, charging infrastructure is far less technically demanding and far less expensive. (Pedelec batteries are rated in Watt Hours while electric car batteries are rated in KiloWatt Hours.)

Post-script: follow the red-brick road?

As Melissa and Chris Bruntlett so engagingly document, The Netherlands has done far more than other industrialized countries to safely integrate bicycles into their overall transportation system, with great results for public health and for the vitality of their cities. One result of the national habit of cycling is that the transportation sector in The Netherlands is accountable for just one-fifth of the country’s carbon emissions, compared to one-third in the US.

While the Dutch have a commanding lead when it comes to effective promotion of everyday cycling, they have achieved this in the context of a transport system where cars remain dominant. Most households own cars, most kilometers are traveled by car, and many features of daily life and of the national landscape will be entirely familiar to people living in other car cultures.

Outside the core urban areas, a hierarchy of speed rules just as it does in many other countries – the spacing is just tighter. The US Library of Congress report “National Funding of Road Infrastructure: Netherlands” states

“According to European statistical sources, the highest motorway density in Europe is found in the Netherlands (78 km per 1000 km² on average in 2009), Luxembourg (59), and Belgium (58).”5

Motorway interchange near Schiphol airport

As noted earlier, more affluent citizens are more likely to own and use cars for their commutes, and they also tend to commute longer distances. For a small, densely populated country which clearly values its farmland, the motorways take up a surprising amount of space in rural areas. Furthermore, dedicated high-speed car-and-truck lanes also impose their geometry on slower-speed travellers. While cycling through the countryside, for example, you need to find the infrequent roads that cross the motorways, where you may bike up and over the dedicated high-speed transport lanes. Likewise if you’re pedaling a bikeway alongside an expressway, you need to take a detour each time you come to an interchange, with a wide curve around the sprawling clover-leaf interchanges. These impositions on cyclists and other low-speed travellers are deemed necessary to allow uninterrupted high-speed travel on the expressways.

But what if, as a world community, we finally embark on the serious kind of energy and lifestyle revolution that is needed to adequately reduce carbon emissions? Or – a more likely scenario in our current political scene – what if we run short of cheap fossil fuels without finding a technological miracle to allow our high-energy lifestyles to continue with low-intensity fuels such as solar and wind-power? What sort of challenges will we face in transforming our transportation infrastructures?

The Netherlands will clearly have a head start in such a transition. Yet as I cycled through the countryside, it often struck me that there too, the road system is astonishingly overbuilt. Frequently I found myself biking on a dedicated bike path, beside a two-lane service road, beside a multi-lane expressway, with another service road and bike path on the other side.

A generation or a few from now, when our descendants have through choice or necessity transitioned to a low-energy, and therefore low speed, transportation system, will they still need or want to devote such wide swaths of countryside to transportation? And if not, how will they repurpose some of those thousands of hectares of heavy-duty pavement?

In my first few days biking through The Netherlands I wasn’t always happy that many bike lanes are routed along old, somewhat rough brick roads – the surface just wasn’t as smooth, fast or  comfortable to bike on as a well-maintained asphalt surface.

But then I reflected on the almost endless repairability and reusability of those brick roads. From my own work experience I know that “recycling” asphalt and concrete pavements demands large amounts of high-intensity energy resources. But in The Netherlands I saw workers with simple hand tools re-laying old bricks and re-creating good-as-new roads.

I won’t be around to see it, but in the long term my guess would be that the centuries-old red brick roads of The Netherlands will be the ones that are renewed for centuries to come.

Centuries-old street in centre of Haarlem.

Next week: a look at new cycling infrastructure in Valencia, Paris and London in light of the infrastructure in The Netherlands.

 

Top photo: covered bike-parking facility next to train station in Groningen.


Footnotes

“A third big bicycle parking garage for Utrecht”, 17 April 2018, Bicycle Dutch website

2 Transport and Mobility 2016, Statistics Netherlands, page 19

3 While the “electric bikes” now seen in North America most often don’t require the rider to pedal at all, the variety common in The Netherlands has a motor which only kicks in while the rider is pedaling. These electric-assist or pedelec bikes thus amplify a rider’s strength, but don’t allow completely effort-free riding.

4 On the downside, ubiquitous availability of charging stations could lead more people to rely on the battery-assist mode almost exclusively, resulting in a steep drop-off in the exercise levels and health benefits of e-bike converts. See discussion of a recent European study at “Riding e-bikes does not lead to health benefits”, on A view from the cycling path, September 12, 2018

5 National Funding of Road Infrastructure: Netherlands”, US Library of Congress

A modest investment with major dividends: cycling culture in the Netherlands

Also published at Resilience.org

How would you describe the process in which a small country builds a 35,000 kilometer network of fully separated bike infrastructure – and traffic-calms 75 per cent of their urban streets to a speeds of 30 km/h (19 mph) or less?

Building the Cycling City, published by Island Press, August 2018

One apt analogy is “picking the low-hanging fruit”. While Dutch cycling policy has required only modest annual investment, it has resulted in cities where bikes are used for most short trips – five kilometers or less – which can be pedaled by ordinary citizens from age 8 to 80 with no great effort. Furthermore this policy has helped preserve historic urban centers by removing the need for intra-city expressways or vast parking lots, while also promoting a fit and healthy population.

These are some of the themes that come through in a recent book by Melissa and Chris Bruntlett. Building The Cycling City: The Dutch Blueprint for Urban Vitality provides an excellent overview of the different ways that transportation policy has developed in five Dutch cities. The book also shows how lessons learned there are now benefitting other cities including New York, Calgary, Vancouver, and San Antonio.

This article is based on the Bruntletts’ excellent work, as well as on my own four-week bike tour of the Netherlands in September and October.

Giving priority to the most vulnerable road users, not the least vulnerable

In cities throughout the industrial world in the 20th century, the lion’s share of public space became the domain of people engaged in a dangerous and polluting activity – driving cars. The Netherlands was no exception to this trend.

But by the mid-1970s, spurred in part by a growing number of traffic fatalities and in part by the OPEC oil embargo, a strong reaction to auto-dominance took hold in several Dutch cities.

In the northern city of Groningen, a plan to build big new roads through historic neighbourhoods prompted 24-year-old Max Van den Berg to get into municipal politics. Just seven years later, the city implemented a transportation policy promoted by Van den Berg and allied councillors. Their Traffic Circulation Plan

“proposed dividing the city center to four parts and forbidding cars to cross between those quarters. This made the inner city practically impenetrable with a car, leaving cycling and walking the best ways to get around. The plan didn’t completely remove motor vehicles from the equation – as public buses and delivery vans would retain limited access to parts of the core – but it came remarkably close.” (Building the Cycling City, page 53-54)

One result 40 years later is that distracted walking or cycling is not a capital crime in Dutch cities. Even at rush hour in Groningen, one can walk or pedal through the central city while engrossed in conversation, while focusing on a smart phone, or while writing the next great novel in your head – without fear of being squashed by a car.

The same pattern holds true in many other small- and mid-sized Dutch cities where the urban core is mostly free of the noise, pollution and danger posed by cars. While some cars and delivery vehicles creep through these districts, the drivers know that foot-powered residents have the right of way – not just at crosswalks or traffic lights but all along the length of narrow historic streets.

Above, a “scramble” in Groningen at rush hour, where cyclists going every direction smoothly negotiate their way through the intersection. Below, an intersection in the core of Leeuwarden, the capital city of the province of Friesland.

Today, Groningen’s traffic planning embodies a very basic principle: “pedestrians over cyclists, cyclists over public transportation, and public transportation over cars. Essentially, the most vulnerable users of the city have priority over the least ….” (Building the Cycling City, page 61)

The important but limited role of separated bike lanes

The Netherlands is justly famous for its vast network of protected bike lanes, not only along arterial roads within cities, but also throughout the countryside connecting every village, town and city.

The rules for when, where and how cycle lanes are built are now well defined. Basically, in areas where it is not practical to slow cars so that they travel at close to the speeds of bicycles, separated paths must be installed. In cities, this often means a street-side lane with a curb separating the bike traffic from car traffic. In most cases these cycle lanes run on both sides of the streets. Critically, the urban bike lanes are not carved out of the sidewalks – the realm of pedestrians, who are also to be protected and encouraged – but are achieved by narrowing or removing car lanes.

“Bicycle street. Autos are guests.”

On rural roads with moderately fast cars but low traffic volumes, separate bike lanes are not always installed but cars are expected to – and do, in my experience – pass bikes carefully and courteously, yielding to bikes whenever oncoming traffic makes it impossible to pass safely.

Alongside busier roads with traffic of 50–60 km/hr or faster, there are fully separated bike lanes. Often these run right beside the roads, but there are also many cases where the bike paths diverge from the roads significantly, providing a quieter ride and cleaner air for people on bikes.

A significant component of the system is the system of signage. Bicycle routes are marked by signs at nearly every intersection, with signs that are visually distinct from the directional signs for motorists. This makes it easy for a bike rider to navigate through new areas, without pulling out either a smart phone or a paper map. There are also hundreds of maps on metal signposts showing local cycling routes, with each province maintaining its own set of local route maps.

Above, a roadside sign showing local cycling routes in the northern province of Friesland. Below, a popular cycling route on the coast in the southern province of Zeeland.

 

All this infrastructure, of course, costs money – but is it expensive? That’s a matter of perspective, and the Dutch do spend more money on cycling infrastructure than other nations. Melissa and Chris Bruntlett write,

“The Dutch cycle because their government spends an astonishing €30 ($35 US) per person per year on bike infrastructure – fifteen times the amount invested in nearby England.” (Building The Cycling City, page 15)

Yet this €30 per person is a very small fraction of what the Dutch – and other nations – spend on auto infrastructure. According to official figures from 2015, “The Dutch government spends a total of 15 billion euros on traffic and transport” each year – meaning the cycling infrastructure expense is a bit more than 3% of the government transport and traffic budget.

For this €30 per capita, the Dutch have been able to preserve the character of their central cities, keep carbon emissions lower than in neighboring countries, and enjoy some of the best health in the world due to an active population and cleaner air. Given the cost of health care alone, the €30 per capita spent by the Dutch government to promote cycling is an astonishing bargain.

While infrastructure such as separated cycle paths is an important component of the cycle strategy, it is important to keep in mind that the Dutch did not immediately launch a major building program when they began to focus on cycling in the 1970s. Furthermore, even today about 75 percent of their roads do not have separate cycle lanes.

In their chapter on Amsterdam, Melissa and Chris Bruntlett explain,

“This cycling utopia was built on traffic-calming rather than bike lanes. Instead of constructing separated cycle tracks on every street, officials started with speed-limit reductions, parking restrictions, through-traffic limitations, and lane narrowing and removals.” (Building the Cycling City, page 93)

Cycle lanes are great, but you’ve got to get from home or office or school to the cycle lane, and that route must be safe before most urban residents will want to bike on a regular basis. If the route to and from a dedicated cycle path remains dangerous and nerve-wracking, only the daring folks who are already cycling are likely to get onto the cycle path.

Traffic-calming on most or all non-arterial roads, therefore, plays a crucial role in laying the groundwork for widespread use of separated bike lanes along major routes. Fortuitously, the cost of traffic-calming methods is generally very low, meaning that is an obvious place to start in a long-term strategy to boost active transportation.

In the next installment, I will look at ways the Dutch are extending the humble bicycle’s reach through an intentional symbiosis with their train network, and through the rapid uptake of electric-assist bikes. A third installment in this series will look at cycling promotion efforts in Valencia, Paris and London, in light of the Dutch example.

In the historic centre of Middelburg, province of Zeeland.


Top photo: mural and bikes in downtown Leeuwarden, Friesland

First principles for sustainable and equitable transportation

A review of Beyond Mobility

Also published at Resilience.org.

Beyond Mobility, Island Press, December 2017

Subway systems, trams, Bus-Rapid-Transit, high-speed trains, cars – these can all play useful roles in well-designed transportation systems. But we must not forget what still is and what should remain the world’s most important transportation method: walking.

That is one of the key messages of Beyond Mobility: Planning Cities for People and Places, a survey of urban planning successes and failures around the world.

Authors Robert Cervero, Erick Guerra and Stefan Al set out a general framework for transportation planning, in which the metric of “number of cars moved per hour” is replaced by an emphasis on place-making, with intergenerational sustainability, social equity, safety, and decarbonization as essential goals. The introduction to “urban recalibration” is followed by brief case studies from dozens of cities throughout the world.

First, do no harm to pedestrians

“For all the emphasis on cars and transit, walking remains the most globally important mode of transportation,” the authors write. “Globally, almost 40 percent of all trips are made by foot, and the figure is close to 90 percent in many smaller and poorer cities.”

In the Global South as in western Europe and North America, official transportation planning is dominated by the motoring classes, to the detriment of those who want to or have no choice but to walk. But Beyond Mobility cites many reasons why building safe cities for walkers is a global issue:

“Because walking produces almost no local or global pollution, creates no traffic fatalities, costs residents only the food needed to power their legs, has proven health benefits, and requires low infrastructure investments relative to highways or transit, maintaining high walking rates is critically important in the Global South.” (Beyond Mobility, page 173)

The public health consequences of a planning preference for automobiles are especially severe in the Global South, with deaths from air pollution and traffic accidents highest among the very people who cannot themselves afford cars. Therefore a shift in transportation policy is an obvious social equity issue.

In North America, after generations in which urban residents moved away from city cores to widely spaced suburbs, the trend is now reversing. The downtown areas of many major cities are once again highly sought after by residents and would-be residents, leading to huge price premiums for central-city residential properties.

A key reason for this preference is walkability. While time spent commuting by car tends to be stressful and unsatisfying1, a new generation has discovered the physical, emotional and social benefits of routine walking to work, school, shopping and entertainment.

This urban renaissance comes with obvious problems due to gentrification. A big part of the problem is scarcity: particularly in North America, desirably walkable neighbourhoods are now rare, while most urban residents must settle for neighbourhoods where basic services are distant and transportation options are expensive in terms of money, time, and/or personal safety.

Mobility when necessary, but not necessarily mobility

Real estate ads for suburban residences frequently highlight a key selling point – “close to the expressway”. By design, employment zones and residential districts are generally far apart in the post-war North American suburb. That has led to a situation where an important attribute for a residential neighbourhood is how easy it is to get far away from that neighbourhood each morning.

It’s a daunting task to reverse that trend, to change suburban settlement patterns to the point where many residents can work, shop, go to school, visit friends or go out to eat without getting into a car or boarding a train. Yet efforts at “sprawl repair” have begun in many places. Many of these efforts are guided by the concept of “place-making”, a central idea in Beyond Mobility. The authors quote urban designer Jan Gehl: “Place-making is turning a neighborhood, town or city from a place you can’t wait to get through to one you never want to leave.”2

Suburban shopping malls and suburban office parks come in for particular scrutiny. Both facilities are typically surrounded by hectares of parking lots. In theory it should be possible to redevelop these facilities (especially the many shopping centres which already stand vacant), creating more intensive mixes of residential, employment, commercial, educational and entertainment uses. The authors note that “One of the saving graces of huge surface parking lots is they can be easily torn up and rebuilt upon.” More generally, they state that

“Fortunately, suburban landscapes are malleable and for the most part can be easily adapted, modified, and reused. … In many ways, suburbs are the low-hanging fruit in the quest to create sustainable, highly livable, and more accessible places.” (Beyond Mobility, page 89–90)

This optimism notwithstanding, examples of successful suburban reconfigurations are rare in this book. In many cases, the authors note, redevelopment of a particular shopping mall or office complex produces an attractive mini-mix of services in a compact area, but is still too distant from most services to be “the kind of neighbourhood you never want to leave”.

One redevelopment option which is conspicuous by its absence in the pages of Beyond Mobility is what we might call the Detroit option. Instead of replacing empty suburban pavement with more intensive building patterns, perhaps there are some suburban districts which should become less intensive, returning to agricultural uses which would boost the sustainability of an urban area in other important ways.

Cycling receives very little attention in the book, even though two-wheeled, human-powered vehicles are already meeting the need for medium-distance transportation in many cities, with minimal infrastructure costs, many public health benefits, and almost no disruption of the primary transportation method, walking. The chapter on autonomous vehicles is also a bit of a puzzle. Though the authors are “cautiously optimistic” that driverless cars will enable a better “balance between mobility and place”, their discussion highlights several reasons to believe this technology may result in more Vehicle Miles Traveled and a greater disconnection from the social environment.

When it comes to transformational changes to the cores of major cities, however, the book is full of inspiring examples. In cities from San Francisco to Seoul, Bogotá to Barcelona, freeways have been replaced with boulevards, intersections have been reconfigured to make passage safer and more pleasant for pedestrians, single-use office complexes have incorporated retail and affordable housing, “park-and-ride” train stations have moved closer to an ideal of “walk-and-ride” as surrounding blocks are redeveloped.

Many of these urban recalibration efforts have their own flaws and limitations, but the value of Beyond Mobility is an even-handed recognition of both successes and failures. Above all, the authors emphasize, equitable, sustainable and convivial cities can’t be created all at once:

“urban recalibration calls for a series of calculated steps aimed at a strategic longer-range vision of a city’s future, advancing principles of people-oriented development and place-making every bit as much as private car mobility, if not more. … It entails a series of 1 to 2 percent recalibration ‘victories’ – intersection by intersection, neighborhood by neighborhood — that cumulatively move beyond the historically almost singular focus on mobility, making for better communities, better environments, and better economies.” (Beyond Mobility, page 211)

 

Top photo: Streets of Hong Kong, China, East Asia, photo by Mstyslav Chernov, via Wikimedia Commons


NOTES

1“Behavioral research shows that out of a number of daily activities, commuting has the most negative effect on peoples’ moods.” Beyond Mobility, page 51, citing a Science article by Daniel Kahneman, “A Survey Method for Characterizing Daily Life Experience”, 2004.

2Beyond Mobility, page 13, citing Jan Gehl, Cities for People, Island Press, 2010.