fragile february

PHOTO POST

A few days of very early spring, brief periods when it felt like the depths of winter – and now and then, a few days somewhere between those extremes. February, we hardly knew you.

Not many of the diving ducks which typically winter here have been hanging around Port Darlington this year. Perhaps there are just too many other options, with almost no ice anywhere on Lake Ontario and many creeks and rivers flowing freely through much of the past month.

We’ve still seen the dabbling birds, though, especially Mallards and Canada Geese, who are content to stand on shore-fast ice when they aren’t feeding in shallow waters.

At Ease in Swift Current

Flight of Five

Scaups have been scarce. But as the sun dipped low one afternoon, this female Greater Scaup swam through the rippled reflection of a dry-docked red boat, to spectacular effect.

Greater Psychedelic Scaup

One place birds were not scarce was around our backyard feeders. As many as two dozen goldfinches, mourning doves, juncos, sparrows, nuthatches and chickadees gathered for hours each day. When there wasn’t room on the feeders or on the ground beneath, they waited their turns from the trees.

Blue Sky with Gold Finch

American Tree Sparrows (foreground below) and Dark-Eyed Juncos (background) were just as happy feeding directly from the finch feeder as from the ground.

Sparrow one and Sparrow too

On snowy, blowy days appetites seemed to be sharpened and the feeders were seldom unattended.

Sheltered Finch

Snowy Squirrel

Cardinal on Vine

Junco with Winter Grasses

The swift swings in weather reshaped the shoreline almost every day. Strong waves piled up banks of stones and freezing spray locked the stones into place. No matter. The next day’s warmer waves carved the formations from underneath while sunshine loosened the icy cement from above.

Just This Minute 2

Just This Minute 3

If you were lucky you could see colorful stones illuminated by sunrise – and remnant ice-shells illuminated by sunset.

Just This Minute 4

Just This Minute 5


Photo at top of page: Just This Minute 1 (click here for full-screen image)

 

A road map that misses some turns

A review of No Miracles Needed

Also published on Resilience

Mark Jacobson’s new book, greeted with hosannas by some leading environmentalists, is full of good ideas – but the whole is less than the sum of its parts.

No Miracles Needed, by Mark Z. Jacobson, published by Cambridge University Press, Feb 2023. 437 pages.

The book is No Miracles Needed: How Today’s Technology Can Save Our Climate and Clean Our Air (Cambridge University Press, Feb 2023).

Jacobson’s argument is both simple and sweeping: We can transition our entire global economy to renewable energy sources, using existing technologies, fast enough to reduce annual carbon dioxide emissions at least 80% by 2030, and 100% by 2050. Furthermore, we can do all this while avoiding any major economic disruption such as a drop in annual GDP growth, a rise in unemployment, or any drop in creature comforts. But wait – there’s more! In so doing, we will also completely eliminate pollution.

Just don’t tell Jacobson that this future sounds miraculous.

The energy transition technologies we need – based on Wind, Water and Solar power, abbreviated to WWS – are already commercially available, Jacobson insists. He contrasts the technologies he favors with “miracle technologies” such as geoengineering, Carbon Capture Storage and Utilization (CCUS), or Direct Air Capture of carbon dioxide (DAC). These latter technologies, he argues, are unneeded, unproven, expensive, and will take far too long to implement at scale; we shouldn’t waste our time on such schemes.  

The final chapter helps to understand both the hits and misses of the previous chapters. In “My Journey”, a teenage Jacobson visits the smog-cloaked cities of southern California and quickly becomes aware of the damaging health effects of air pollution:

“I decided then and there, that when I grew up, I wanted to understand and try to solve this avoidable air pollution problem, which affects so many people. I knew what I wanted to do for my career.” (No Miracles Needed, page 342)

His early academic work focused on the damages of air pollution to human health. Over time, he realized that the problem of global warming emissions was closely related. The increasingly sophisticated computer models he developed were designed to elucidate the interplay between greenhouse gas emissions, and the particulate emissions from combustion that cause so much sickness and death.

These modeling efforts won increasing recognition and attracted a range of expert collaborators. Over the past 20 years, Jacobson’s work moved beyond academia into political advocacy. “My Journey” describes the growth of an organization capable of developing detailed energy transition plans for presentation to US governors, senators, and CEOs of major tech companies. Eventually that led to Jacobson’s publication of transition road maps for states, countries, and the globe – road maps that have been widely praised and widely criticized.

In my reading, Jacobson’s personal journey casts light on key features of No Miracles Needed in two ways. First, there is a singular focus on air pollution, to the omission or dismissal of other types of pollution. Second, it’s not likely Jacobson would have received repeat audiences with leading politicians and business people if he challenged the mainstream orthodox view that GDP can and must continue to grow.

Jacobson’s road map, then, is based on the assumption that all consumer products and services will continue to be produced in steadily growing quantities – but they’ll all be WWS based.

Does he prove that a rapid transition is a realistic scenario? Not in this book.

Hits and misses

Jacobson gives us brief but marvelously lucid descriptions of many WWS generating technologies, plus storage technologies that will smooth the intermittent supply of wind- and sun-based energy. He also goes into considerable detail about the chemistry of solar panels, the physics of electricity generation, and the amount of energy loss associated with each type of storage and transmission.

These sections are aimed at a lay readership and they succeed admirably. There is more background detail, however, than is needed to explain the book’s central thesis.

The transition road map, on the other hand, is not explained in much detail. There are many references to scientific papers in which he outlines his road maps. A reader of No Miracles Needed can take Jacobson’s word that the model is a suitable representation, or you can find and read Jacobson’s articles in academic journals – but you don’t get the needed details in this book.

Jacobson explains why, at the level of a device such as a car or a heat pump, electric energy is far more efficient in producing motion or heat than is an internal combustion engine or a gas furnace. Less convincingly, he argues that electric technologies are far more energy-efficient than combustion for the production of industrial heat – while nevertheless conceding that some WWS technologies needed for industrial heat are, at best, in prototype stages.

Yet Jacobson expresses serene confidence that hard-to-electrify technologies, including some industrial processes and long-haul aviation, will be successfully transitioning to WWS processes – perhaps including green hydrogen fuel cells, but not hydrogen combustion – by 2035.

The confidence in complex global projections is often jarring. For example, Jacobson tells us repeatedly that the fully WWS energy system of 2050 “reduces end-use energy requirements by 56.4 percent” (page 271, 275).1 The expressed precision notwithstanding, nobody yet knows the precise mix of storage types, generation types, and transmission types, which have various degrees of energy efficiency, that will constitute a future WWS global system. What we should take from Jacobson’s statements is that, based on the subset of factors and assumptions – from an almost infinitely complex global energy ecosystem – which Jacobson has included in his model, the calculated outcome is a 56% end-use energy reduction.

Canada’s Premiers visit Muskrat Falls dam construction site, 2015. Photo courtesy of Government of Newfoundland and Labrador; CC BY-NC-ND 2.0 license, via Flickr.

Also jarring is the almost total disregard of any type of pollution other than that which comes from fossil fuel combustion. Jacobson does briefly mention the particles that grind off the tires of all vehicles, including typically heavier EVs. But rather than concede that these particles are toxic and can harm human and ecosystem health, he merely notes that the relatively large particles “do not penetrate so deep into people’s lungs as combustion particles do.” (page 49)

He claims, without elaboration, that “Environmental damage due to lithium mining can be averted almost entirely.” (page 64) Near the end of the book, he states that “In a 2050 100 percent WWS world, WWS energy private costs equal WWS energy social costs because WWS eliminates all health and climate costs associated with energy.” (page 311; emphasis mine)

In a culture which holds continual economic growth to be sacred, it would be convenient to believe that business-as-usual can continue through 2050, with the only change required being a switch to WWS energy.

Imagine, then, that climate-changing emissions were the only critical flaw in the global economic system. Given that assumption, is Jacobson’s timetable for transition plausible?

No. First, Jacobson proposes that “by 2022”, no new power plants be built that use coal, methane, oil or biomass combustion; and that all new appliances for heating, drying and cooking in the residential and commercial sectors “should be powered by electricity, direct heat, and/or district heating.” (page 319) That deadline has passed, and products that rely on combustion continue to be made and sold. It is a mystery why Jacobson or his editors would retain a 2022 transition deadline in a book slated for publication in 2023.

Other sections of the timeline also strain credulity. “By 2023”, the timeline says, all new vehicles in the following categories should be either electric or hydrogen fuel-cell: rail locomotives, buses, nonroad vehicles for construction and agriculture, and light-duty on-road vehicles. This is now possible only in a purely theoretical sense. Batteries adequate for powering heavy-duty locomotives and tractors are not yet in production. Even if they were in production, and that production could be scaled up within a year, the charging infrastructure needed to quickly recharge massive tractor batteries could not be installed, almost overnight, at large farms or remote construction sites around the world.

While electric cars, pick-ups and vans now roll off assembly lines, the global auto industry is not even close to being ready to switch the entire product lineup to EV only. Unless, of course, they were to cut back auto production by 75% or more until production of EV motors, batteries, and charging equipment can scale up. Whether you think that’s a frightening prospect or a great idea, a drastic shrinkage in the auto industry would be a dramatic departure from a business-as-usual scenario.

What’s the harm, though, if Jacobson’s ambitious timeline is merely pushed back by two or three years?

If we were having this discussion in 2000 or 2010, pushing back the timeline by a few years would not be as consequential. But as Jacobson explains effectively in his outline of the climate crisis, we now need both drastic and immediate actions to keep cumulative carbon emissions low enough to avoid global climate catastrophe. His timeline is constructed with the goal of reducing carbon emissions by 80% by 2030, not because those are nice round figures, but because he (and many others) calculate that reductions of that scale and rapidity are truly needed. Even one or two more years of emissions at current rates may make the 1.5°C warming limit an impossible dream.

The picture is further complicated by a factor Jacobson mentions only in passing. He writes,

“During the transition, fossil fuels, bioenergy, and existing WWS technologies are needed to produce the new WWS infrastructure. … [A]s the fraction of WWS energy increases, conventional energy generation used to produce WWS infrastructure decreases, ultimately to zero. … In sum, the time-dependent transition to WWS infrastructure may result in a temporary increase in emissions before such emissions are eliminated.” (page 321; emphasis mine)

Others have explained this “temporary increase in emissions” at greater length. Assuming, as Jacobson does, that a “business-as-usual” economy keeps growing, the vast majority of goods and services will continue, in the short term, to be produced and/or operated using fossil fuels. If we embark on an intensive, global-scale, rapid build-out of WWS infrastructures at the same time, a substantial increment in fossil fuels will be needed to power all the additional mines, smelters, factories, container ships, trucks and cranes which build and install the myriad elements of a new energy infrastructure. If all goes well, that new energy infrastructure will eventually be large enough to power its own further growth, as well as to power production of all other goods and services that now rely on fossil energy.

Unless we accept a substantial decrease in non-transition-related industrial activity, however, the road that takes us to a full WWS destination must route us through a period of increased fossil fuel use and increased greenhouse gas emissions.

It would be great if Jacobson modeled this increase to give us some guidance how big this emissions bump might be, how long it might last, and therefore how important it might be to cumulative atmospheric carbon concentrations. There is no suggestion in this book that he has done that modeling. What should be clear, however, is that any bump in emissions at this late date increases the danger of moving past a climate tipping point – and this danger increases dramatically with every passing year.


1In a tl;dr version of No Miracles Needed published recently in The Guardian, Jacobson says “Worldwide, in fact, the energy that people use goes down by over 56% with a WWS system.” (“‘No miracles needed’: Prof Mark Jacobson on how wind, sun and water can power the world”, 23 January 2023)

 


Photo at top of page by Romain Guy, 2009; public domain, CC0 1.0 license, via Flickr.

Profits of Utopia

Also published on Resilience

What led to the twentieth century’s rapid economic growth? And what are the prospects for that kind of growth to return?

Slouching Towards Utopia: An Economic History of the Twentieth Century, was published by Basic Books, Sept 2022; 605 pages.

Taken together, two new books go a long way toward answering the first of those questions.

Bradford J. DeLong intends his Slouching Towards Utopia to be a “grand narrative” of what he calls “the long twentieth century”.

Mark Stoll summarizes his book Profit as “a history of capitalism that seeks to explain both how capitalism changed the natural world and how the environment shaped capitalism.”

By far the longer of the two books, DeLong’s tome primarily concerns the years from 1870 to 2010. Stoll’s slimmer volume goes back thousands of years, though the bulk of his coverage concerns the past seven centuries.

Both books are well organized and well written. Both make valuable contributions to an understanding of our current situation. In my opinion Stoll casts a clearer light on the key problems we now face.

Although neither book explicitly addresses the prospects for future prosperity, Stoll’s concluding verdict offers a faint hope.

Let’s start with Slouching Towards Utopia. Bradford J. Delong, a professor of economics at University of California Berkeley, describes “the long twentieth century” – from 1870 to 2010 – as “the first century in which the most important historical thread was what anyone would call the economic one, for it was the century that saw us end our near-universal dire material poverty.” (Slouching Towards Utopia, page 2; emphasis mine) Unfortunately that is as close as he gets in this book to defining just what he means by “economics”.

On the other hand he does tell us what “political economics” means:

“There is a big difference between the economic and the political economic. The latter term refers to the methods by which people collectively decide how they are going to organize the rules of the game within which economic life takes place.” (page 85; emphasis in original)

Discussion of the political economics of the Long Twentieth Century, in my opinion, account for most of the bulk and most of the value in this book.

DeLong weaves into his narratives frequent – but also clear and concise – explanations of the work of John Maynard Keynes, Friedrich Hayek, and Karl Polanyi. These three very different theorists responded to, and helped bring about, major changes in “the rules of the game within which economic life takes place”.

DeLong uses their work to good effect in explaining how policymakers and economic elites navigated and tried to influence the changing currents of market fundamentalism, authoritarian collectivism, social democracy, the New Deal, and neoliberalism.

With each swing of the political economic pendulum, the industrial, capitalist societies either slowed, or sped up, the advance “towards utopia” – a society in which all people, regardless of class, race, or sex, enjoy prosperity, human rights and a reasonably fair share of the society’s wealth.

DeLong and Stoll present similar perspectives on the “Thirty Glorious Years” from the mid-1940s to the mid-1970s, and a similarly dim view of the widespread turn to neoliberalism since then.

They also agree that while a “market economy” plays an important role in generating prosperity, a “market society” rapidly veers into disaster. That is because the market economy, left to its own devices, exacerbates inequalities so severely that social cohesion falls apart. The market must be governed by social democracy, and not the other way around.

DeLong provides one tragic example:

“With unequal distribution, a market economy will generate extraordinarily cruel outcomes. If my wealth consists entirely of my ability to work with my hands in someone else’s fields, and if the rains do not come, so that my ability to work with my hands has no productive market value, then the market will starve me to death – as it did to millions of people in Bengal in 1942 and 1943.” (Slouching Towards Utopia, p 332)

Profit: An Environmental History was published by Polity Books, January 2023; 280 pages.

In DeLong’s and Stoll’s narratives, during the period following World War II “the rules of the economic game” in industrialized countries were set in a way that promoted widespread prosperity and rising wealth for nearly all classes, without a concomitant rise in inequality.

As a result, economic growth during that period was far higher than it had been from 1870 to 1940, before the widespread influence of social democracy, and far higher than it has been since about 1975 during the neoliberal era.

During the Thirty Glorious Years, incomes from the factory floor to the CEO’s office rose at roughly the same rate. Public funding of advanced education, an income for retired workers, unemployment insurance, strong labor unions, and (in countries more civilized than the US) public health insurance – these social democratic features ensured that a large and growing number of people could continue to buy the ever-increasing output of the consumer economy. High marginal tax rates ensured that government war debts would be retired without cutting off the purchasing power of lower and middle classes.

Stoll explains that long-time General Motors chairman Alfred Sloan played a key role in the transition to a consumer economy. Under his leadership GM pioneered a line-up ranging from economy cars to luxury cars; the practice of regularly introducing new models whose primary features were differences in fashion; heavy spending on advertising to promote the constantly-changing lineup; and auto financing which allowed consumers to buy new cars without first saving up the purchase price.

By then the world’s largest corporation, GM flourished during the social democratic heyday of the Thirty Glorious Years. But in Stoll’s narrative, executives like Alfred Sloan couldn’t resist meddling with the very conditions that had made their version of capitalism so successful:

“There was a worm in the apple of postwar prosperity, growing out of sight until it appeared in triumph in the late 1970s. The regulations and government activism of the New Deal … so alarmed certain wealthy corporate leaders, Alfred Sloan among them, that they began to develop a propaganda network to promote weak government and low taxes.” (Profit, page 176)

This propaganda network achieved hegemony in the 1980s as Ronald Reagan and Margaret Thatcher took the helm in the US and the UK. DeLong and Stoll concur that the victory of neoliberalism resulted in a substantial drop in the economic growth rate, along with a rapid growth in inequality. As DeLong puts it, the previous generation’s swift march towards utopia slowed to a crawl.

DeLong and Stoll, then, share a great deal when it comes to political economics – the political rules that govern how economic wealth is distributed.

On the question of how that economic wealth is generated, however, DeLong is weak and Stoll makes a better guide.

DeLong introduces his discussion of the long twentieth century with the observation that between 1870 and 2010, economic growth far outstripped population growth for the first time in human history. What led to that economic acceleration? There were three key factors, DeLong says:

“Things changed starting around 1870. Then we got the institutions for organization and research and the technologies – we got full globalization, the industrial research laboratory, and the modern corporation. These were the keys. These unlocked the gate that had previously kept humanity in dire poverty.” (Slouching Towards Utopia, p. 3)

Thomas Edison’s research lab in West Orange, New Jersey. Cropped from photo by Anita Gould, 2010, CC BY-SA 2.0 license, via Flickr.

These may have been necessary conditions for a burst of economic growth, but were they sufficient? If they were sufficient, then why should we believe that the long twentieth century is conclusively over? Since DeLong’s three keys are still in place, and if only the misguided leadership of neoliberalism has spoiled the party, would it not be possible that a swing of the political economic pendulum could restore the conditions for rapid economic growth?

Indeed, in one of DeLong’s few remarks directly addressing the future he says “there is every reason to believe prosperity will continue to grow at an exponential rate in the centuries to come.” (page 11)

Stoll, by contrast, deals with the economy as inescapably embedded in the natural environment, and he emphasizes the revolutionary leap forward in energy production in the second half of the 19th century.

Energy and environment

Stoll’s title and subtitle are apt – Profit: An Environmental History. He says that “economic activity has always degraded environments” (p. 6) and he provides examples from ancient history as well as from the present.

Economic development in this presentation is “the long human endeavor to use resources more intensively.” (p. 7) In every era, tapping energy sources has been key.

European civilization reached for the resources of other regions in the late medieval era. Technological developments such as improved ocean-going vessels allowed incipient imperialism, but additional energy sources were also essential. Stoll explains that the Venetian, Genoese and Portuguese traders who pioneered a new stage of capitalism all relied in part on the slave trade:

“By the late fifteenth century, slaves made up over ten percent of the population of Lisbon, Seville, Barcelona, and Valencia and remained common in southern coastal Portugal and Spain for another century or two.” (p. 40)

The slave trade went into high gear after Columbus chanced across the Americas. That is because, even after they had confiscated two huge continents rich in resources, European imperial powers still relied on the consumption of other humans’ lives as an economic input:

“Free-labor colonies all failed to make much profit and most failed altogether. Colonizers resorted to slavery to people colonies and make them pay. For this reason Africans would outnumber Europeans in the Americas until the 1840s.” (p. 47)

While the conditions of slavery in Brazil were “appallingly brutal”, Stoll writes, Northern Europeans made slavery even more severe. As a result “Conditions in slave plantations were so grueling and harsh that birthrates trailed deaths in most European plantation colonies.” (p 49)

‘Shipping Sugar’ from William Clark’s ‘Ten views in the island of Antigua’ (Thomas Clay, London, 1823). Public domain image via Picryl.com.

Clearly, then, huge numbers of enslaved workers played a major and fundamental role in rising European wealth between 1500 and 1800. It is perhaps no coincidence that in the 19th century, as slavery was being outlawed in colonial empires, European industries were learning how to make effective use of a new energy source: coal. By the end of that century, the fossil fuel economy had begun its meteoric climb.

Rapid increases in scientific knowledge, aided by such organizations as modern research laboratories, certainly played a role in commercializing methods of harnessing the energy in coal and oil. Yet this technological knowhow on its own, without abundant quantities of readily-extracted coal and oil, would not have led to an explosion of economic growth.

Where DeLong is content to list “three keys to economic growth” that omit fossil fuels, Stoll adds a fourth key – not merely the technology to use fossil fuels, but the material availability of those fuels.

By 1900, coal-powered engines had transformed factories, mines, ocean transportation via steamships, land transportation via railroads, and the beginnings of electrical grids. The machinery of industry could supply more goods than most people had ever thought they might want, a development Stoll explains as a transition from an industrial economy to a consumer economy.

Coal, however, could not have powered the car culture that swept across North America before World War II, and across the rest of the industrialized world after the War. To shift the consumer economy into overdrive, an even richer and more flexible energy source was needed: petroleum.

By 1972, Stoll notes, the global demand for petroleum was five-and-a-half times as great as in 1949.

Like DeLong, Stoll marks the high point of the economic growth rate at about 1970. And like DeLong, he sees the onset of neoliberalism as one factor slowing and eventually stalling the consumer economy. Unlike DeLong, however, Stoll also emphasizes the importance of energy sources in this trajectory. In the period leading up to 1970 net energy availability was skyrocketing, making rapid economic growth achievable. After 1970 net energy availability grew more slowly, and increasing amounts of energy had to be used up in the process of finding and extracting energy. In other words, the Energy Return on Energy Invested, which increased rapidly between 1870 and 1970, peaked and started to decline over recent decades.

This gradual turnaround in net energy, along with the pervasive influence of neoliberal ideologies, contributed to the faltering of economic growth. The rich got richer at an even faster pace, but most of society gained little or no ground.

Stoll pays close attention to the kind of resources needed to produce economic growth – the inputs. He also emphasizes the anti-goods that our economies turn out on the other end, be they toxic wastes from mining and smelting, petroleum spills, smog, pervasive plastic garbage, and climate-disrupting carbon dioxide emissions.

Stoll writes, 

“The relentless, rising torrent of consumer goods that gives Amazon.com its apt name places unabating demand on extractive industries for resources and energy. Another ‘Amazon River’ of waste flows into the air, water, and land.” (Profit, p. 197)

Can the juggernaut be turned around before it destroys both our society and our ecological life-support systems, and can a fair, sustainable economy take its place? On this question, Stoll’s generally excellent book disappoints.

While he appears to criticize the late-twentieth century environmental movement for not daring to challenge capitalism itself, in Profit’s closing pages he throws cold water on any notion that capitalism could be replaced.

“Capitalism … is rooted in human nature and human history. These deep roots, some of which go back to our remotest ancestors, make capitalism resilient and adaptable to time and circumstances, so that the capitalism of one time and place is not that of another. These roots also make it extraordinarily difficult to replace.” (Profit, p. 253)

He writes that “however much it might spare wildlife and clean the land, water, and air, we stop the machinery of consumer capitalism at our peril.” (p. 254) If we are to avoid terrible social and economic unrest and suffering, we must accept that “we are captives on this accelerating merry-go-round of consumer capitalism.” (p. 256)

It’s essential to curb the power of big corporations and switch to renewable energy sources, he says. But in a concluding hint at the so-far non-existent phenomenon of “absolute decoupling”, he writes,

“The only requirement to keep consumer capitalism running is to keep as much money flowing into as many pockets as possible. The challenge may be to do so with as little demand for resources as possible.” (Profit, p. 256)

Are all these transformations possible, and can they happen in time? Stoll’s final paragraph says “We can only hope it will be possible.” Given the rest of his compelling narrative, that seems a faint hope indeed.

* * *

Coming next: another new book approaches the entanglements of environment and economics with a very different perspective, telling us with cheerful certainty that we can indeed switch the industrial economy to clean, renewable energies, rapidly, fully, and with no miracles needed.



Image at top of page: ‘The Express Train’, by Charles Parsons, 1859, published by Currier and Ives. Image donated to Wikimedia Commons by Metropolitan Museum of Art.