Naomi Klein, photograph by Joe Mabel, distributed via Wikimedia Commons

A renewable energy economy will create more jobs. Is that a good thing?

Also published at

In a tidal wave of good news stories, infographics and Facebook memes about renewable energy job creation, the implicit, unquestioned assumption is that More Jobs = A Healthier Economy.

A popular Facebook meme, based on the Stanford University Solutions Project, celebrates the claim that in a renewable energy-powered Canada, 40% more people will work in the energy sector.

From the Environment Hamilton Facebook page.

From the Environment Hamilton Facebook page.


In elaborate info-graphics, the Solutions Project provides comparable claims for all 50 US states and countries around the world – although “assertion-graphic” might be a better term, since the graphics are presented with no footnotes and no clear links to any data that might allow a skeptical mind to evaluate the conclusions.

From The Solutions Project website.

From The Solutions Project website.

And Naomi Klein, author of This Changes Everything and one of the proponents of The Leap Manifesto, cites the Energy Transition in Germany and notes that 400,000 new jobs have already been created. In her hour-long talk on the CBC Radio Ideas program and podcast, Klein gets at some of the key issues that will determine whether More Energy Jobs = A Good Thing, and we’ll return to this podcast later.

To start, though, let’s look at the issue through the following proposition:

The 20th century fossil-fueled economic growth spurt happened not because the energy industry created many jobs, but because it created very few jobs.

For most of human history, providing energy in the form of food calories was the major human occupation. Even in societies that consumed relatively high amounts of energy via firewood, harvesting and transporting that wood kept a lot of people busy.

But during the 19th and 20th centuries, as the available per capita energy supply in industrialized countries exploded, the proportion of the population employed supplying that energy dropped dramatically.

The result: instead of farming to provide the carbohydrates that feed humans and oxen, or cutting firewood to heat buildings, nearly the whole population has been free to do other activities. Whether we have made good use of this opportunity is debatable, but we’ve had plenty of energy, and nearly our entire labour force, available to run an elaborate manufacturing, consumption and service economy.

Seen from this perspective, the claim that renewable energy will create more jobs might set off alarms.

What’s in a job?

Part of the difficulty is that when we speak of a job, we refer to two (or more) very different things.

A job might mean simply something that has to be done. In this sense of the word, we don’t usually celebrate jobs. If we need to carry all our water in buckets from a well five kilometers from home, there are a lot of jobs in water-carrying – but we would probably welcome having taps right in our kitchens instead. Agriculture employs a lot of people if the only tools are sticks, but with better tools the same amount of food can be raised with fewer people working the fields.

So when we think of a job as the need to do something, we typically think that the fewer jobs the better.

When we celebrate job-creation, on the other hand, we typically mean something quite different –  a “job” is an activity that is accompanied by a pay-cheque. Since in our society most of us need to get pay-cheques for most of our lives, job-creation strikes us as a good thing to the extent that pay-cheques are involved.

Here’s the wrinkle with renewable energy job creation: the renewable energy transition will likely create jobs in the sense of adding to the quantity of work that must be done (which we normally try to minimize) and jobs in the sense of providing pay-cheques (which we typically want to maximize). The two types of job-creation are at cross-purposes, and the outcome is uncertain.

Allocation of energy surplus

Widespread prosperity depends not only on what work is done and what surplus is produced, but on how that surplus is allocated and distributed.

In the middle of the 20th century in North America and Europe, only a few people worked in energy supply but they produced a huge surplus. At the same time, the products of surplus energy were distributed in relatively equal fashion, compared to the rising levels of inequality today. The mass consumption economy – a brief anomaly in human history which is ironically referred to as Business As Usual – depended on both conditions being met. There had to be a large surplus of energy produced (or, more accurately, extracted) by a few people, and this surplus energy had to be widely distributed so that most people could participate in a consumer economy.

Naomi Klein gives prominent emphasis to the second of these two conditions. In her CBC Radio Ideas talk, she says

There’s a group in the US called Movement Generation which has a slogan that I quote a lot, which is that “transition is invevitable, but justice is not.” You can respond to climate change in a way that people putting up solar panels are paid terrible wages. In the US prison inmates are making some of the solar panels that they’re putting up. … There has to be a road map for responding to climate change in an intersectional way, which solves multiple problems at once.”

She cites the German Energy Transition as an encouraging example:

There are 900 new energy co-operatives that have sprung up in Germany. Two hundred towns and cities in Germany have taken their energy grids back from the private companies that took them over in the 1990s, and they call it “energy democracy”. They’re taking back control over their energy, so that the resources stay in the communities and they can use the profits generated from renewable energy to pay for services. They’ve also created 400,000 jobs as part of this transition. So they’re showing how you solve multiple problems at once. Lower emissions create good unionized jobs and generate the revenue we need to fight the logic of austerity at the local level.”

In Klein’s formulation, democratic control of the energy economy is a key to prosperity. Because of this energy democracy, the new jobs are “good unionized jobs” which “fight the logic of austerity”. But is that sustainable in the long run?

As Klein says, in Germany’s “energy democracy” they use “the profits generated from renewable energy to pay for services”. But that presupposes that the renewable energy technologies being used do indeed generate “profits”.

It remains an open question how much profit – how much surplus energy – will be generated from renewable energy development. If renewable energy developments consume nearly as much energy as they produce, then in the long run the energy sector may produce many pay-cheques but they won’t be generous pay-cheques, however egalitarian society might be.

Book cover, Life After Growth by Tim MorganEnergy sprawl

Tim Morgan uses the apt phrase “energy sprawl” to describe what happens as we switch to energy technologies with a lower Energy Return on Energy Invested (EROEI).

‘energy sprawl’ … has both physical and economic meanings. In physical terms, the infrastructure required to access energy and deliver it to where it is needed is going to expand exponentially. At the same time, the proportion of GDP absorbed by the energy infrastructure is going to increase as well, which means that the rest of the economy will shrink.” (Life After Growth, Harriman House, 2013, locus 2224)

As Morgan makes clear, energy sprawl is not at all unique to renewable energy transition – it applies equally to non-conventional, bottom-of-the-barrel fossil fuels such as fracked oil and gas, and bitumen extracted from Alberta’s tar sands. There will indeed be more jobs in a renewable resource economy, compared to the glory days of the fossil fuel economy, but there will also be more energy jobs if we cling to fossil fuels.

As energy sprawl proceeds, more of us will work in energy production and distribution, and fewer of us will be free to work at other pursuits. As Klein and the other authors of the Leap Manifesto argue, the higher number of energy jobs might be a net plus for society, if we use energy more wisely AND we allocate surplus more equitably.

But unless our energy technologies provide a good Energy Return On Energy Invested, there will be little surplus to distribute. In other words, there will be lots of new jobs, but few good pay-cheques.

Top photo: Canadian author and activist Naomi Klein, photographed by Joe Mabel in October 2015, accessed via Wikimedia Commons

Insulators on high-voltage electricity transmission line.

Timetables of power

Also published at

accounting_for_energy_2For more than three decades, Vaclav Smil has been developing the concepts presented in his 2015 book Power Density: A Key to Understanding Energy Sources and Uses.

The concept is (perhaps deceptively) simple: power density, in Smil’s formulation, is “the quotient of power and land area”. To facilitate comparisons between widely disparate energy technologies, Smil states power density using common units: watts per square meter.

Wonkometer-225Smil makes clear his belief that it’s important that citizens be numerate as well as literate, and Power Density is heavily salted with numbers. But what is being counted?

Perhaps the greatest advantage of power density is its universal applicability: the rate can be used to evaluate and compare all energy fluxes in nature and in any society. – Vaclav Smil, Power Density, pg 21

A major theme in Smil’s writing is that current renewable energy resources and technologies cannot quickly replace the energy systems that fuel industrial society. He presents convincing evidence that for current world energy demand to be supplied by renewable energies alone, the land area of the energy system would need to increase drastically.

Study of Smil’s figures will be time well spent for students of many energy sources. Whether it’s concentrated solar reflectors, cellulosic ethanol, wood-fueled generators, fracked light oil, natural gas or wind farms, Smil takes a careful look at power densities, and then estimates how much land would be taken up if each of these respective energy sources were to supply a significant fraction of current energy demand.

This consideration of land use goes some way to addressing a vacuum in mainstream contemporary economics. In the opening pages of Power Density, Smil notes that economists used to talk about land, labour and capital as three key factors in production, but in the last century, land dropped out of the theory.

The measurement of power per unit of land is one way to account for use of land in an economic system. As we will discuss later, those units of land may prove difficult to adequately quantify. But first we’ll look at another simple but troublesome issue.

Does the clock tick in seconds or in centuries?

It may not be immediately obvious to English majors or philosophers (I plead guilty), but Smil’s statement of power density – watts per square meter – includes a unit of time. That’s because a watt is itself a rate, defined as a joule per second. So power density equals joules per second per square meter.

There’s nothing sacrosanct about the second as the unit of choice. Power densities could also be calculated if power were stated in joules per millisecond or per megasecond, and with only slightly more difficult mathematical gymnastics, per century or per millenium. That is of course stretching a point, but Smil’s discussion of power density would take on a different flavor if we thought in longer time frames.

Consider the example with which Smil opens the book. In the early stages of the industrial age, English iron smelting was accomplished with the heat from charcoal, which in turn was made from coppiced beech and oak trees. As pig iron production grew, large areas of land were required solely for charcoal production. This changed in the blink of an eye, in historical terms, with the development of coal mining and the process of coking, which converted coal to nearly 100% pure carbon with energy equivalent to good charcoal.

As a result, the charcoal from thousands of hectares of hardwood forest could be replaced by coal from a mine site of only a few hectares. Or in Smil’s favored terms,

The overall power density of mid-eighteenth-century English coke production was thus roughly 500 W/m2, approximately 7,000 times higher than the power density of charcoal production. (Power Density, pg 4)

Smil notes rightly that this shift had enormous consequences for the English countryside, English economy and English society. Yet my immediate reaction to this passage was to cry foul – there is a sleight of hand going on.

While the charcoal production figures are based on the amount of wood that a hectare might produce on average each year, in perpetuity, the coal from the mine will dwindle and then run out in a century or two. If we averaged the power densities of the woodlot and mine over several centuries or millennia, the comparison look much different.

And that’s a problem throughout Power Density. Smil often grapples with the best way to average power densities over time, but never establishes a rule that works well for all energy sources.

Generating station near Niagara Falls

The Toronto Power Generating Station was built in 1906, just upstream from Horseshoe Falls in Niagara Falls, Ontario. It was mothballed in 1974. Photographed in February, 2014.

In discussing photovoltaic generation, he notes that solar radiation varies greatly by hour and month. It would make no sense to calculate the power output of a solar panel solely by the results at noon in mid-summer, just as it would make no sense to run the calculation solely at twilight in mid-winter. It is reasonable to average the power density over a whole year’s time, and that’s what Smil does.

When considering the power density of ethanol from sugar cane, it would be crazy to run the calculation based solely on the month of harvest, so again, the figures Smil uses are annual average outputs. Likewise, wood grown for biomass fuel can be harvested approximately every 20 years, so Smil divides the energy output during a harvest year by 20 to arrive at the power density of this energy source.

Using the year as the averaging unit makes obvious sense for many renewable energy sources, but this method breaks down just as obviously when considering non-renewable sources.

How do you calculate the average annual power density for a coal mine which produces high amounts of power for a hundred years or so, and then produces no power for the rest of time? Or the power density of a fracked gas well whose output will continue only a few decades at most?

The obvious rejoinder to this line of questioning is that when the energy output of a coal mine, for example, ceases, the land use also ceases, and at that point the power density of the coal mine is neither high nor low nor zero; it simply cannot be part of a calculation. As we’ll discuss later in this series, however, there are many cases where reclamations are far from certain, and so a “claim” on the land goes on.

Smil is aware of the transitory nature of fossil fuel sources, of course, and he cites helpful and eye-opening figures for the declining power densities of major oil fields, gas fields and coal mines over the past century. Yet in Power Density, most of the figures presented for non-renewable energy facilities apply for that (relatively brief) period when these facilities are in full production, but they are routinely compared with power densities of renewable energy facilities which could continue indefinitely.

So is it really true that power density is a measure “which can be used to evaluate and compare all energy fluxes in nature and in any society”? Only with some critical qualifications.

In summary, we return to Smil’s oft-emphasized theme, that current renewable resource technologies are no match for the energy demands of our present civilization. He argues convincingly that the power density of consumption on a busy expressway will not be matched to the power density of production of ethanol from corn: it would take a ridiculous and unsustainable area of corn fields to fuel all that high-energy transport. Widening the discussion, he establishes no less convincingly, to my mind, that solar power, wind power, and biofuels are not going to fuel our current high-energy way of life.

Yet if we extend our averaging units to just a century or two, we could calculate just as convincingly that the power densities of non-renewable fuel sources will also fail to support our high-energy society. And since we’re already a century into this game, we might be running out of time.

Top photo: insulators on high-voltage transmission line near Darlington Nuclear Generating Station, Bowmanville, Ontario.

Freight expectations

Also published at

Alice J. Friedemann’s new book When Trucks Stop Running explains concisely how dependent American cities are on truck transport, and makes a convincing case that renewable energies cannot and will not power our transportation system in anything like its current configuration.

But will some trucks stop running, or all of them? Will the change happen suddenly over 10 years, or gradually over 40 years or more? Those are more difficult questions, and they highlight the limitations of guesstimating future supply trends while taking future demand as basically given.

When Trucks Stop Running, Springer, 2016

When Trucks Stop Running, Springer, 2016

Alice J. Friedemann worked for more than 20 years in transportation logistics. She brings her skills in systems analysis to her book When Trucks Stop Running: Energy and the Future of Transportation (Springer Briefs in Energy, 2016).

In a quick historical overview, Friedemann explains that in 2012, a severely shrunken rail network still handled 45% of the ton-miles of US freight, while burning only 2% of transportation fuel. But the post-war highway-building boom had made it convenient for towns and suburbs to grow where there are neither rails nor ports, with the result that “four out of five communities depend entirely on trucks for all of their goods.”

After a brief summary of peak oil forecasts, Friedemann looks at the prospects for running trains and trucks on something other than diesel fuel, and the prospects are not encouraging. Electrification, whether using batteries or overhead wires, is ill-suited to the power requirements of trains and trucks with heavy loads over long distances. Friedemann also analyzes liquid fuel options including biofuels and coal-to-liquid conversions, but all of these options have poor Energy Return On Investment ratios.

While we search for ways to retool the economy and transportation systems, we would be wise to prioritize the use of precious fuels. Friedemann notes that while trains are much more energy-efficient than heavy-duty trucks, trucks in turn are far more efficient than cars and planes.

So “instead of electrifying rail, which uses only 2% of all U.S. transportation fuel, we should discourage light-duty cars and light trucks, which guzzle 63% of all transportation fuel and give the fuel saved to diesel-electric locomotives.” Prioritizing fuel use this way could buy us some much-needed time – time to change infrastructure that took decades or generations to build.

If it strains credulity to imagine US policy-makers facing these kinds of choices of their own free will, it is nevertheless true that the unsustainable will not be sustained. Hard choices will be made, whether we want to make them or not.

A question of timing

Friedemann’s book joins other recent titles which put the damper on rosy predictions of a smooth transition to renewable energy economies. She covers some of the same ground as David MacKay’s Sustainable Energy – Without The Hot Air or Vaclav Smil’s Power Density, but in more concise and readable fashion, focused specifically on the energy needs of transportation.

In all three of these books, there is an understandable tendency to answer the (relatively) simple question: can future supply keep up with demand, assuming that demand is in line with today’s trends?

But of course, supply will influence demand, and vice versa. The interplay will be complex, and may confound apparently straight-forward predictions.

It’s important to keep in mind that in economic terms, demand does not equal what we want or even what we need. We can, and probably will, jump up and down and stamp our feet and DEMAND that we have abundant cheap fuel, but that will mean nothing in the marketplace. The economic demand equals the amount of fuel that we are willing and able to buy at a given price. As the price changes, so will demand – which will in turn affect the supply, at least in the short term.

Consider the Gross and Net Hubbert Curves graph which Friedemann reproduces.

Gross and Net Hubbert Curve, from When Trucks Stop Running, page 124

From When Trucks Stop Running, page 124

While the basic trend lines make obvious sense, the steepness of the projected decline depends in part on a steady demand: the ultimately recoverable resource is finite, and if we continue to extract the oil as fast as possible (the trend through our lifetimes) then the post-peak decline will indeed be steep, perhaps cliff-life.

But can we and will we sustain demand if prices spike again? That seems unlikely, particularly given our experience over the past 15 years. And if effective demand drops dramatically due to much higher pricing, then the short-term supply-on-the-market should also drop, while long-term available supply-in-the-ground will be prolonged. The right side of that Hubbert curve might eventually end up at the same place, but at a slower pace.

The most wasteful uses of fuels might soon be out of our price range, so we simply won’t be able to waste fuel at the same breathtaking rate. The economy might shudder and shrink, but we might find ways to pay for the much smaller quantities of fuel required to transport essential goods.

In other words, there may soon be far fewer trucks on the road, but they might run long enough to give us time to develop infrastructure appropriate to a low-energy economy.

Top photo: fracking supply trucks crossing the Missouri River in the Fort Berthold Indian Reservation in North Dakota, June 2014.