Designing Climate Solutions – a big-picture view that doesn’t skimp on details

Also published at Resilience.org

Let us pause for a moment of thanks to the policy wonks, who work within the limitations of whatever is currently politically permissible and take important steps forward in their branches of bureaucracy.

Let us also give thanks to those who cannot work within those limitations, and who are determined to transform what is and is not politically permissible.

Designing Climate Solutions: A Policy Guide for Low-Carbon Energy is published by Island Press, November 2018.

An excellent new book from Island Press makes clear that both approaches to the challenge of climate disruption are necessary, though it deals almost exclusively with the work of policy design and implementation.

Designing Climate Solutions, by Hal Harvey with Robbie Orvis and Jeffrey Rissman, is a thoughtful and thorough discussion of policy options aimed at reducing greenhouse gas emissions.

Harvey is particularly focused on discovering which specific policies are likely to have the biggest – and equally important, the quickest – impact on our cumulative greenhouse gas emissions. But he also pays close attention to the fine details of policy design which, if ignored, can cause the best-intentioned policies to miss their potentials.

One of the many strengths of the book is the wealth of graphics which present complex information in visually effective formats.

A political acceptable baseline

Though political wrangling is barely discussed, Harvey notes that “It goes without saying that a key consideration of any climate policy is whether it stands a chance of being enacted. A highly abating and perfectly designed policy is not worth pursuing if there is no chance it can be implemented.”

He takes as a starting point the target of the Paris Agreement of 2015, which has received agreement in principle from nearly all countries: to reduce emissions enough by 2050 to give us at least a 50% chance of avoiding more than 2°C global warming. (We’ll return later to the question of the reasonableness of that goal.)

Throughout the book, then, different aspects of climate policy are evaluated for their relative contributions to the 2°C goal.

Working with a climate policy computer model which is discussed in detail in an appendix and which is available online, Harvey presents this framework: a “business as usual” scenario would result in emissions of 2,253 Gigatons of CO2-equivalent from 2020 to 2050, but that must be reduced by 1,185 Gigatons.

The following chart presents what Harvey’s team believes is the realistic contribution of various sectors to the emission-reduction goal.

“Figure 3.4 – Policy contributions to meeting the 2°C global warming target.” (From Hal Harvey et. al., Designing Climate Solutions, Island Press, page 67)

The key point from this chart is that about 70% of the reductions are projected to come in three broad areas: changes to industrial production, conversion of electrical generation (“power sector”) to renewable energy, and cross-sector pricing of carbon emissions in line with their true social costs.

(The way things are categorized makes a big difference. For example, agriculture is slotted as a subset of the industrial sector, which boosts the relative importance of this sector for emissions-reduction potential.)

Harvey buttresses the argument by looking at the costs – or in many cases, cost-savings – of emissions-reduction policies. The following chart shows the relative costs of policies on the vertical dimension, and their relative contribution to emissions reduction on the horizontal dimension.

“Figure 3.2 – The policy cost curve shows the cost-effectiveness and emission reduction potential of different policies.” (From Hal Harvey et. al., Designing Climate Solutions, Island Press, page 59)

 

The data portrayed in this chart can guide policy in two important ways: policy-makers can focus on the areas which make the most difference in emissions, while also being mindful of the cost issues that can be so important in getting political buy-in.

It may come as a surprise that the transportation and building sectors, in this framework, are responsible for only small slices of overall emission reductions.

Building Codes and Appliance Standards are pegged to contribute about 5% of the emission reductions, while a suite of transportation policies could together contribute about 7% of emission reductions.

A clear view of the overriding importance of reducing cumulative emissions by 2050 helps explain these seemingly small contributions – and why it would nevertheless be a mistake to neglect these sectors.

To achieve climate policy goals it’s critical to reduce emissions quickly – and that’s hard to do in the building and transportation sectors. Building stock tends to last for generations, and major appliances typically last 10 years or more. Likewise car, truck and bus fleets tend to stay on the road for ten years or more. Thus the best building codes and the best standards for vehicle efficiency will have a very limited impact on carbon emissions over the next 15 years. By the same token, even the most rapid electrification possible of car and truck fleets won’t have full impact on emissions until the electric grid is generally decarbonized.

These are among the reasons that decarbonizing the electric grid, along with cross-sector pricing of carbon emissions, are so important to emissions reduction in the short term.

Meanwhile, though, it is also essential to get on with the slower work of upgrading buildings, appliances, transportation systems, and decarbonized agricultural and industrial processes. In the longer term, especially after 2050 when it will be essential to achieve zero net carbon emissions, even (relatively) minor contributions to emissions will be important. But as Harvey puts it, “There is no mopping up the last 10 percent of carbon emissions if we don’t eliminate the first 90 percent!”

International case studies

Harvey gets deep into the nuances of policy with an excellent discussion of the differences between carbon taxes and carbon caps. This helps readers to understand the value of hybrid approaches, and the importance in some countries of policies to limit “leakage”, whereby major industries simply shift production to jurisdictions without carbon prices or caps.

The many case studies – from the US, Germany, China, Japan, and other countries – illustrate policy designs that work especially well, or conversely, policies that have resulted in unintentional consequences which reduce their effectiveness.

These case studies also provide a reminder of the amount of hard work and dedication that mostly unsung bureaucrats have put in to the cause of mitigating climate disruption. As much as we may mourn that political leadership has been sorely lacking and that we appear to be losing the battle to forestall climate disaster, it seems undeniable that we would be considerably worse off if it weren’t for the accomplishments of civil servants who have eked out small gains in their own sectors.

For example, the hard-won feed-in tariffs and other policies promoting renewable energies for electric generation haven’t yet resulted in a wholesale transformation of the grid – but they’ve resulted in an exponential drop in the cost per kilowatt of solar- and wind-generated power. Performance standards for many types of engines have resulted in significant improvements in energy efficiency. These improvements have so far mostly been offset by our economy’s furious push to sell more and bigger products – but these efficiency gains could nevertheless play a key role in a sane economic system of the future.

The 2° gamble

Although most of the book is devoted to details of particular policies, Harvey’s admirably lucid discussion of the urgency of the climate challenge makes clear that we need far greater commitment from the highest levels of political leadership.

He notes that the reality of climate action has been far less impressive than the high-minded rhetoric. With few exceptions the nations responsible for most of the carbon emissions have been woefully slow to act, which makes the challenge both more urgent and more difficult.

Harvey illustrates this point with the chart below. The black solid and dotted lines represent the necessary progress with emissions, if we had been smart enough to ensure emissions peaked in 2015. The red lines show what may now be the best-case scenario – an emissions peak in 2030 – and the much more drastic reductions that will then be required to have a 50% chance of keeping global warming to 2°C or less.

“Figure I-7. The longer the delay in peaking emissions, the harder it becomes to meet the same carbon budget.” (From Hal Harvey et. al., Designing Climate Solutions, Island Press, page 9)

We might well ask if a 50% likelihood of worldwide climate catastrophe is a prudent and reasonable policy aim, or certifiably bonkers. Still, a 50/50 chance of disaster is somewhat better than assured civilizational collapse, which is the destination of “business as usual.”

In any case, the political climate has changed considerably in the short time since Harvey and colleagues prepared Designing Climate Solutions. With the challenge to the political status quo embodied in the Green New Deal movement, it now seems plausible that some major carbon-emitting countries will enact more appropriate greenhouse-gas emission targets in the next few years. If that comes to pass, these new goals will need to be translated into effective policy, and the many lessons in Designing Climate Solutions will remain important.

What about fossil fuel subsidies?

In a book of such wide and ambitious scope, it is inevitable that some important facets are omitted or given short shrift.

The issues of deforestation and forest degradation are duly noted, but Harvey declines to delve into this subject by explaining that “The science, the policies, and the actors for reducing emissions from land use are very different from those for energy and industrial processes, and they deserve separate treatment from experts in land use policy.”

The issue of embodied carbon does not come up in the text. In assessing the replacement of fossil-powered vehicle fleets by electric vehicles, for example, is the embodied carbon inherent in current manufacturing processes a significant factor? Readers will need to search elsewhere for that answer.

Also noteworthy is the absence of any acknowledgement that economic growth itself may be a problem. For all the discussion of ways to transform industrial processes, there is no discussion of whether the scale of industrial output should also be reduced. In most countries today, of course, a civil servant who tries to promote degrowth will soon become an expert in unemployment, but that highlights the need for a wider and deeper look at economic fundamentals than is currently politically permissible.

The missing subject that seems most germane to the book’s central purpose, though, is the issue of subsidies for fossil fuels. Harvey does state in passing that “for many sectors and technologies, pricing is the key. Removing subsidies for fossil fuels is the first step – though still widely ignored.” Indeed, many countries have paid lip service to the need to stop subsidizing fossil fuels, but few have taken action along these lines.

But throughout Harvey’s extensive examination of pricing signals – e.g., feed-in tariffs, carbon taxes, carbon caps, low-interest loans to renewable energy projects – there is no discussion of the degree to which existing fossil fuel subsidies continue to undercut the goals of climate policy and retard the transition to a low-carbon economy.

In my next post I’ll take up this subject with a look at how some governments, while tepidly supporting the transformation envisioned in the Paris Agreements, continue to safeguard their fossil fuel sectors through generous subsidies.


Illustration at top adapted from Designing Climate Solutions cover by David Ter Avanesyan.

Of hope, grief, and humility

A review of Dahr Jamail’s The End of Ice

Also published at Resilience.org

If you’re looking for hope in Dahr Jamail’s new book The End Of Ice, the recommendation that Dr. Harold Wanless gives for Miami is about the closest you’ll find:

“Sea level rise is going to accelerate faster than the models, and it’s not going to stop,” he says. “So the government has to have a plan that includes buyouts. It’s cheaper to buy this area out than it is to maintain the infrastructure.” And before vacating most of the city,

The final thing is cleaning the land before inundation, and this is most important. We should be planning for that, including removing things in the buildings and industrial land that will pollute the marine environment, including low-lying areas in flood-plains. Otherwise we will give our kids a highly polluted new marine environment ….” (From The End of Ice: Bearing Witness and Finding Meaning in the Path of Climate Disruption, by Dahr Jamail, published by The New Press, January 2019

Is preparing for a new Atlantis a hopeful scenario? Well, it’s all relative. As South Miami mayor Dr. Philip Stoddard puts it, “Frankly, there is worse stuff than sea level rise. Most of the rest of the aspects of climate change are far worse. With sea level rise you can move, as compared to what do you do when the food supply disappears? How do you grow crops? How do we feed people? The answer is, not very well.”

Dahr Jamail is the author of three books growing out of his experience as an unembedded journalist in Iraq. But he says what he learned while researching The End Of Ice shook him even more deeply than did his reporting from Iraq.

He is also an experienced and dedicated mountaineer who has spent a big chunk of his life working with rescue teams on high-altitude glaciers in Alaska. Watching the rapid shrinkage of these glaciers has given him a personal window to the onset of climate disruption. But communion with these starkly beautiful environments also offers him a way to cope with the overwhelmingly frightening prognosis that he hears from climate scientists in the Arctic, the Amazon basin, south Florida and the coral reefs of the South Pacific.

Though most of the book consists of interviews with front-line scientists, a recurring theme is his struggle with despair, depression and a sense of meaningless when confronting what he is learning. For all of us who pay attention to the steadily worsening climate news, his reflections on hope, grief, and humility are an important part of his message.

Suffice it to say that most of his interview subjects think we have already blown our chances of keeping global average temperature rise to 2°C or less – even if, miraculously, all nations meet their Paris Agreement commitments. And if 3°C, 4°C or more of temperature rise has already been set in motion, then some truly devastating positive feedback loops are likely to follow. Two such feedbacks that Jamail discusses are rapid die-offs of forests in both the Amazon and the boreal regions, which would turn these forests into major carbon sources rather than carbon sinks; and the potential for an explosive release of long-frozen methane due to the warming of arctic permafrost.

Even without such feedbacks, many researchers believe that the IPCC reports have been underestimating risks for decades now. As Harold Wanless explains,

There are political games going on in the IPCC and their modelers can’t look beyond the model. The IPCC only uses stuff in refereed journals, which is already four to five years outdated, and they cut off three years early for peer review, so it is at least 10 years outdated ….”

Furthermore, Wanless says, the need for consensus in the IPCC reports results in “lowball projections” skewing the reports and downplaying the seriousness of our predicament.

With each successive IPCC report, the previous predictions are shown to have been too optimistic. The loss of Arctic sea ice is galloping ahead of official projections – “we already reached the amount of Arctic sea ice loss anticipated for 2050 back in 2002.”

(Today’s news offers further confirmation, as a major new report says even in the best-case scenario at least one-third of the Himalayan ice cap will be lost by 2100, while with a 4–5°C global warming, at least two-thirds of this ice will be gone by 2100.)

Unlike the Greenland glaciers or the ice sheets covering Antarctica (which many scientists believe are already on an unstoppable path to melting), mountain-top glaciers don’t hold enough water to play a large part in sea-level rise. These glaciers do, however, play essential roles in their regional ecosystems, and their disappearance will have devastating impacts on biodiversity, agriculture, and political stability for hundreds of millions or billions of people.

Mountain snow caps, Jamail explains, are like water towers – storing water throughout the winter and spring, and gradually releasing cold water into rivers and valleys in summer. The icewater shapes micro-climates as it flows down the hills, providing life-giving conditions for species dependent on cold water. Then it provides drinking water or irrigation water for some of the world’s major agricultural areas in foothills and plains.

If snowpacks melt too early due to winter rains or high spring temperatures, the water is gone long before it is really needed in summer. The consequences will be widespread, Jamail says:

Most people in the United States who don’t live in areas where some or most of their water source is reliant upon glaciers may think melting glaciers won’t impact them. But they would be wrong. Diminishing glaciers in the western United States will impact agriculture, driving up food prices everywhere. And globally, when the millions of people who rely on glaciers for their water and agriculture lose those glaciers, many of these people will have to leave their homes, becoming refugees.”

Jamail ends the book with an extended reflection on death, despair, grieving and gratitude. He finds solace in quiet time gazing at the sunset on the face of a mountain, though that time feels like the precious hours shared at an intimate friend’s deathbed. And he says he has learned to surrender hope: “I came to understand that hope blocked the greater need to grieve, so that was the reason necessitating the surrendering of it.” He adds,

“Grieving for what is happening to the planet also now brings me gratitude for the smallest, most mundane things .… My acceptance of our probable decline opens into a more intimate and heartfelt union with life itself. … I am grieving and yet I have never felt more alive.”

Perhaps each person must answer these questions their own way, and though I have immense respect for Jamail’s work and his conclusions, I cannot say I am ready either to fully embrace hope or to give it up.

Jamail also shares inspiration in the words of Stan Rushworth, an elder of Cherokee descent who relates the lessons imparted by his father. For me these words especially ring true. Rushworth says:

The dire position we’re in now is solid evidence of the fact that the predominant civilization does not have a handle on all the interrelationships between humans and what we call the natural world. If it did, we wouldn’t be facing this dire situation. … We simply do not have a big enough or right-minded enough vision. Because of this, we need to allow for something we cannot understand.

This is not about hope, but more, humility, and carefully considered action within that humility, and much deeper listening.”

Photo at top: Dahr Jamail, photographed by John Fleming, from the cover of The End of Ice

Beyond computational thinking – a ‘cloud of unknowing’ for the 21st century

Also published at Resilience.org

New Dark Age: Technology and the End of the Future, by James Bridle, Verso Books, 2018

If people are to make wise decisions in our heavily technological world, is it essential that they learn how to code?

For author and artist James Bridle, that is analogous to asking whether it is essential that people be taught plumbing skills.

Of course we want and need people who know how to connect water taps, how to find and fix leaks. But,

learning to plumb a sink is not enough to understand the complex interactions between water tables, political geography, ageing infrastructure, and social policy that define, shape and produce actual life support systems in society.” (Except where otherwise noted, all quotes in this article are from New Dark Age by James Bridle, Verso Books 2018)

Likewise, we need people who can view our technological society as a system – a complex, adaptive and emergent system – which remains heavily influenced by certain motives and interests while also spawning new developments that are beyond any one group’s control.

Bridle’s 2018 book New Dark Age takes deep dives into seemingly divergent subjects including the origins of contemporary weather forecasting, mass surveillance, airline reservation systems, and Youtube autoplay lists for toddlers.  Each of these excursions is so engrossing that it is sometimes difficult to hold his central thesis in mind, and yet he weaves all the threads into a cohesive tapestry.

Bridle wants us to be aware of the strengths of what he terms “computational thinking” – but also its critical limitations. And he wants us to look at the implications of  the internet as a system, not only of power lines and routers and servers and cables, but also of people, from the spies who tap into network nodes to monitor our communications, to the business analysts who devise ways to “monetize” our clicks, to the Facebook groups who share videos backing up their favoured theories.

Wiring of the SEAC computer, which was built in 1950 for the U.S. National Bureau of Standards. It was used until 1964, for purposes including meteorology, city traffic simulations, and the wave function of  the helium atom. Image from Wikimedia Commons.

From today’s weather, predict tomorrow’s

Decades before a practical electronic computer existed, pioneering meteorologist Lewis Fry Richardson1 thought up what would become a “killer app” for computers.

Given current weather data – temperature, barometric pressure, wind speed – for a wide but evenly spaced matrix of locations, Richardson reasoned that it should be possible to calculate how each cell’s conditions would interact with the conditions in adjacent cells, describe new weather patterns that would arise, and therefore predict tomorrow’s weather for each and all of those locations.

That method became the foundation of contemporary weather forecasting, which has improved by leaps and bounds in our lifetimes. But in 1916, when Richardson first tried to test his ideas they were practically useless. The method involved so many calculations that Richardson worked for weeks, then months, then years to work out a ‘prediction’ from a single day’s weather data.

But by the end of World War II, the US military had developed early electronic computers which could begin to make Richardson’s theory a useful one. To military strategists, of course, the ability to predict weather could provide a great advantage in war. Knowing when a particular attack would be helped or hindered by the weather would be a great boon to generals. Even more tantalizingly, if it were possible to clearly understand and predict the weather, it might then also be possible to control the weather, inflicting a deluge or a sandstorm, for example, on vulnerable enemy forces.

John von Neumann, a mathematician, Manhattan Project physicist and a major figure in the development of computers, summed it up.

In what could be taken as the founding statement of computational thought, [von Neumann] wrote: ‘All stable processes we shall predict. All unstable processes we shall control.’”

Computational thinking, then, relied on the input of data about present conditions, and further data on how such conditions have been correlated in the past, in order to predict future conditions.

But because many aspects of our world are connected in one system – an adaptive and emergent system – this system spawns new trends which behave in new ways, not predictable simply from the patterns of the past. In other words, in the anthropocene age our system is not wholly computable. We need to understand, Bridle writes, that

technology’s increasing inability to predict the future – whether that’s the fluctuating markets of digital stock exchanges, the outcomes and applications of scientific research, or the accelerating instability of the global climate – stems directly from these misapprehensions about the neutrality and comprehensibility of computation.”

Take the case of climate studies and meteorology. The technological apparatus to collect all the data, crunch the numbers, and run the models is part of a huge industrial infrastructure that is itself changing the climate (with the internet itself contributing an ever-more significant share of greenhouse gas emissions). As a result the world’s weather is ever more turbulent, producing so-called ‘100 year storms’ every few years. We can make highly educated guesses about critical climatic tipping points, but we are unable to say for sure when these events will occur or how they will interact.

Age-old traditional knowledge of ways to deal with this week’s or this year’s weather is becoming less reliable. Scientists, too, should acknowledge the limits of computational thinking for their work:

In a 2016 editorial for the New York Times, computational meteorologist and past president of the American Meteorological Society William B. Gail cited a number of patterns that humanity has studied for centuries, but that are disrupted by climate change: long-term weather trends, fish spawning and migration, plant pollination, monsoon and tide cycles, the occurrence of ‘extreme’ weather events. For most of recorded history, these cycles have been broadly predictable, and we have built up vast reserves of knowledge that we can tap into in order to better sustain our ever more entangled civilisation.”

The implications are stark: “Gail foresees a time in which our grandchildren might conceivably know less about the world in which they live than we do today, with correspondingly catastrophic events for complex societies.”

World map of submarine communication cables, 2015. Cable data by Greg Mahlknecht, world map by Openstreetmap contributors. Accessed through Wikimedia Commons.

Lines of power

In many ways, Bridle says, we can be mislead by the current view of the internet as a “cloud”. Contrary to our metaphor, he writes, “The cloud is not weightless; it is not amorphous, or even invisible, if you know where to look for it.” To be clear,

It is a physical infrastructure consisting of phone lines, fibre optics, satellites, cables on the ocean floor, and vast warehouses filled with computers, which consume huge amounts of water and energy and reside within national and legal jurisdictions. The cloud is a new kind of industry, and a hungry one.”

We have already referred to the rapidly growing electricity requirements of the internet, with its inevitable impact on the world’s climate. When we hear about “cloud computing”, Bridle also wants us to bear in mind the ways in which this “cloud” both reflects and reinforces military, political and economic power relationships:

The cloud shapes itself to geographies of power and influence, and it serves to reinforce them. The cloud is a power relationship, and most people are not on top of it.”

It is no accident, he says, that maps of internet traffic trace pathways of colonial power that are hundreds of years old. And we shouldn’t be surprised that the US military-intelligence complex, which gave birth to internet protocols, have also installed wiretapping equipment and personnel at junctions where trans-oceanic cables come ashore in the US, allowing them to scoop up far more communications data than they can effectively monitor.2

These power relationships come into play in determining not only what is visible in our web applications, but what is hidden. Bridle is a keen plane-spotter, and he marvels at flight-tracking websites which show, in real time, the movements of thousands of commercial aircraft around the world. “The view of these flight trackers, like that of Google Earth and other satellite image services, is deeply seductive,” he says, but wait:

This God’s-eye view is illusory, as it also serves to block out and erase other private and state activities, from the private jets of oligarchs and politicians to covert surveillance flights and military manoeuvres. For everything that is shown, something is hidden.”

Aviation comes up frequently in the book, as its military and commercial importance is reflected in the outsize role aviation has played in the development of computing and communications infrastructure. Aviation provides compelling examples of the unintended, emergent consequences of this technology.

High anthropoclouds in the sky of Barcelona, 2010, accessed through Wikimedia Commons. The clouds created by aircraft have an outsize impact on climate change. And climate change, Bridle writes, contributes to the increasingly vexing problem of “clear air turbulence” which threatens aircraft but cannot be reliably predicted.

On the last day of October, just a few months after New Dark Age was published, I found myself at Gatwick International Airport near London. I wanted to walk to the nearby town of Crawley to pick up a cardboard packing box. Though the information clerks in the airport terminal told me there was no walking route to Crawley, I had already learned that there was in fact a multi-use cycling lane, and so I hunted around the delivery ramps and parking garage exits until I found my route.

It was a beautiful but noisy stroll, with a brook on one side, a high fence on the other, and the ear-splitting roar of jet engines rising over me every few minutes. Little did I know that in just over a month this strange setting would be a major crime scene, as the full force of the aeronautical/intelligence industry pulled out all stops to find the operators of unauthorized drones, while hundreds of thousands of passengers were stranded in the pre-Christmas rush.

Another month has passed and no perpetrators have been identified, leading some to wonder if the multiple drone sightings were all mistakes. But in any case, aviation experts have long agreed that it’s just a matter of time before “non-state actors” manage to use unmanned aerial vehicles to deadly effect. Wireless communications, robotics, and three-dimensional location systems are now so widely available and inexpensive, it is unrealistic to think that drones will always be controlled by or even tracked by military or police authorities.

The exponential advance of artificial stupidity

Bridle’s discussion of trends in artificial intelligence is at once one of the most intriguing and, to this layperson at least, one of the less satisfying sections of the book. Many of us have heard about a new programming approach, following which a computer program taught itself to play the game Go, and soon was able to beat the world’s best human players of this ancient and complex game.

Those of us who have had to deal with automated telephone-tree answering systems, as much as we may hate the experience, can recognize that voice-recognition and language processing systems have also gotten better. And Google Translate has improved by leaps and bounds in just a few years time.

Bridle’s discussion of the relevant programming approaches presupposes a basic familiarity with the concept of neural networks. Since he writes so clearly about so many other facets of computational thinking, I wish he had chosen to spell out the major approaches to artificial intelligence a bit more for those of us who do not have degrees in computer science.

When he discusses the facility of Youtube in promoting mindless videos, and the efficiency of social media in spreading conspiracy theories of every sort, his message is lucid and provocative.

Here the two-step dance between algorithms and human users of the web produces results that might be laughable if they weren’t chilling. Likewise, strange trends develop out of interplay between Google’s official “mission” – “to organize the world’s information” – and the business model by which it boosts its share price – selling ads.

The Children’s Youtube division of Google has been one of Bridle’s research interests, and those of us fortunate enough not to be acquainted with this realm of culture are likely to be shocked by what he finds.

You might ask what kind of idiot would name a video “Surprise Play Doh Eggs Peppa Pig Stamper Cars Pocoyo Minecraft Surfs Kinder Play Doh Sparkle Brilho”. A clever idiot, that’s who, an idiot who may or may not be human, but who knows how to make money. Bridle explains the motive:

This unintelligible assemblage of brand names, characters and keywords points to the real audience for the descriptions: not the viewer, but the algorithms that decide who sees which videos.”

These videos are created to be seen by children too young to be reading titles. Youtube accommodates them – and parents happy to have their toddlers transfixed by a screen – by automatically assembling long reels of videos for autoplay. The videos simply need to earn their place in the playlists with titles that contain enough algorithm-matching words or phrases, and hold the toddler’s attention long enough for ads to be seen and the next video to begin.

The content factories that churn out videos by the millions, then, must keep pace with current trends while spending less on production than will be earned by the accompanying ads, which are typically sold on a “per thousand views” basis.

Is this a bit of a stretch from “organizing the world’s information”? Yes, but what’s more important, a corporation’s lofty mission statement, or its commercial raison d’être? (That is, to sell ads.)

When it comes to content aimed at adults the trends are just as troubling, as Bridle’s discussion of conspiracy theories makes clear.

According to the Diagnostic and Statistical Manual of Mental Disorders, he explains, “a belief is not a delusion when it is held by a person’s ‘culture or subculture’.”

But with today’s social media, it is easy to find people who share any particular belief, no matter how outlandish or ridiculous that belief might seem to others:

Those that the psychiatric establishment would have classified as delusional can ‘cure’ themselves of their delusions by seeking out and joining an online community of like minds. Any opposition to this worldview can be dismissed as a cover-up of the truth of their experience ….”

This pattern, as it happens, reflects the profit-motive basis of social media corporations – people give a media website their attention for much longer when it spools videos or returns search results that confirm their biases and beliefs, and that means there are more ads viewed, more ad revenue earned.

If Google and other social media giants do a splendid job of “organizing the world’s information”, then, they are equally adept at organizing the world’s misinformation:

The abundance of information and the plurality of worldviews now accessible to us through the internet are not producing a coherent consensus reality, but one riven by fundamentalist insistence on simplistic narratives, conspiracy theories, and post-factual politics. It is on this contradiction that the idea of a new dark age turns: an age in which the value we have placed upon knowledge is destroyed by the abundance of that profitable commodity, and in which we look about ourselves in search of new ways to understand the world.”

Our unknowable future

After reading to the last page of a book in which the author covers a dazzling array of topics so well and weaves them together so skillfully, it would be churlish to wish he had included more. I would hope, however, that Bridle or someone with an equal gift for systemic analysis will delve into two questions that naturally arise from this work.

Bridle notes that the energy demands of our computational network are growing rapidly, to the point that this network is a significant driver of climate change. But what might happen to the network if our energy supply becomes effectively scarce due to rapidly rising energy costs?3

Major sectors of the so-called Web 2.0 are founded in a particular business model: services are provided to the mass of users “free”, while advertisers and other data-buyers pay for our attention in order to sell us more products. What might happen to this dominant model of “free services”, if an economic crash means we can’t sustain consumption on anything close to the current scale?

I suspect Bridle would say that the answers to these questions, like so many others, do not compute. Though computation can be a great tool, it will not answer many of the most important questions.

In the morass of information/misinformation in which our network engulfs us, we might find many reasons for pessimism. But Bridle urges us to accept and even welcome the deep uncertainty which has always been a condition of our existence.

As misleading as the “cloud” may be as a picture of our computer network, Bridle suggests we can find value if we take a nod from the 14th-century Christian mystic classic  “The Cloud of Unknowing.” Its anonymous author wrote, “On account of pride, knowledge may often deceive you …. Knowledge tends to breed conceit, but love builds.”

Or in Bridle’s 21st century phrasing,

It is this cloud that we have sought to conquer with computation, but that is continually undone by the reality of what we are attempting. Cloudy thinking, the embrace of unknowing, might allow us to revert from computational thinking, and it is what the network itself urges upon us.”


Photo at top: anthropogenic clouds over paper mill UPM-Kymmene, Schongau, 2013. Accessed at Wikimedia Commons.


NOTES

1 For an excellent account of the centuries-long development of contemporary meteorology, including the important role of Lewis Fry Richardson, see Bill Streever’s 2016 book And Soon I Heard a Roaring Wind: A Natural History of Moving Air.
2 More precisely, though intelligence agents can often zero in on suspicious conversations after a crime has been committed or an insurgency launched, the trillions of bits of data are unreliable sources of prediction before the fact.
3 Kris de Decker has posed some intriguing possibilities in Low-Tech Magazine. See, for example, his 2015 article “How to Build a Low-tech Internet”.

The clean green pipeline machine – a free-market fairy tale

A review of Donald Gutstein’s The Big Stall

Also published at Resilience.org

In late 2016 Canadian Prime Minister Justin Trudeau was ready to spell out his government’s “Pan-Canadian Framework on Clean Growth and Climate Change”. His pitch to Canadians went along these lines:

We recognize that climate change is a serious challenge and that we must transition to a new economy which dramatically cuts carbon emissions. To make this transition we need a strong economy and a united country. To have a strong economy we must allow our fossil fuel sector to continue to grow. And to keep our country united while we impose a modest price on carbon, we must also build new pipelines so that oil sands extraction can grow. That is why my government is proud to lead the way in reducing carbon emissions, by ensuring that the oil sands sector emits more carbon.

If you think that sounds absurd, then you’re likely not part of Canada’s financial, industrial, political or media elite, who for the most part applauded both the minimal carbon tax and the substantial oil sands expansions being pushed by Trudeau and by Alberta Premier Rachel Notley.

How did we get to a point where oil companies and governments are accepted as partners in devising climate action plans? And why did these climate action plans, decade after decade, permit fossil fuel companies to continue with business as usual, while carbon emissions grew steadily?

This is the subject of Donald Gutstein’s new book The Big Stall: How Big Oil and Think Tanks are Blocking Action on Climate Change in Canada. (James Lorimer & Co., Toronto, October 2018)

Though Gutstein takes a deep dive into Canadian politics, industry and academia, much of his story also concerns the series of international conferences which attempted, with very little success, to come up with strong international solutions for a climate crisis that knows no borders. Thus The Big Stall has relevance to climate change campaigners in many countries.

By the early 1990s, Gutstein says, the pervasive influence of neoliberal economic theory was leading to “a silent corporate takeover of the United Nations Framework Convention on Climate Change”.

Neoliberal theory said that the “free market”, not government, should be relied on to solve the problem of climate change. That suited the oil industry, because the one thing they feared most was a hard-and-fast regulatory limit on carbon emissions.

An ad for tourism in the Canadian Rockies, perhaps? Not so – this is a still from the Alberta government’s tv ad series with the tagline “The TransMountain Pipeline is on  Canada’s side.” At keepcanadaworking.ca.

Lessons from Big Tobacco

In common with many other historians, Gutstein pays close attention to the strong links between public relations campaigns used by the tobacco industry and the similar strategies employed by Big Oil, particularly in sowing public confusion about the scientific consensus.

But as Gutstein’s book makes clear, the mainstream environmental movement failed to absorb a key lesson from the decades-long struggle to combat tobacco addiction: the industry whose products are the root of the problem should not be relied on to devise solutions.

Corporate participation in COP21 [Paris 2015] and in the conferences and talks leading up to and following it stands in stark contrast with the corporate role in the World Health Organization’s Framework Convention on Tobacco Control. There, tobacco interests are excluded, a fact which helps explain that treaty’s rapid progress in curtailing tobacco use. … At the climate talks, in sharp contrast, there is no conflict between Big Oil’s interests and public health and environmental interests. The corporate sector succeeded in making itself integral to the process.” (The Big Stall, page 158-159)

Fossil fuel interests assured their seat at the table in part by sponsoring the negotiations. In Paris in 2015, Gutstein writes,

Big Oil even partly financed the talks. France could have easily paid the C$255-million cost, but by allowing corporations to contribute 20 per cent, the host country encouraged the private sector to be part of the inner circle that was planning and organizing the event.” (The Big Stall, page 160)

The result was that in spite of inspiring rhetoric and lofty goals, the Paris Agreement contained no binding emissions reduction requirements. Instead countries were free to make their own reduction “pledges” with no penalties for missing their targets. This result was perfectly predictable, Gutstein says: “Paris was guided to its inevitable conclusion by the veiled hand of Big Oil and its corporate and political allies.” (The Big Stall, page 155)

He traces the pattern of corporate influence over climate negotiations back to the role of Canadian businessman Maurice Strong at the 1992 Rio Summit, and former Norwegian Prime Minister Gro Brundtland at the eponymous Brundtland Commission in the 1980s.

Brundtland helped popularize the phrase “sustainable development” – a phrase which Gutstein says has come to mean little beyond sustaining the profits and asset values of major corporations. Thus fossil fuel interests can forge ahead with plans to extract even more nonrenewable resources while forestalling international action to reduce carbon emissions – and then sign declarations of support for “sustainable development”.

An ad for Wind Turbines? Flowers? Puppies? Kites? None of the above – this is a still from an Alberta government tv spot promoting the TransMountain Pipeline expansion, which is intended to double the amount of bitumen exported through the Port of Vancouver.

To tax or not to tax carbon

The story gets complicated, of course, because corporate figures do not always agree on the best ways to protect their bottom lines, and sometimes they respond to changing political winds in different ways.

Gutstein covers these shifts in corporate spin in great detail. Put simply, major fossil fuel interests went from denying that there was any scientific consensus on the reality or cause of global warming, to support for carbon-emissions trading markets, to support for a modest carbon tax.

In Canada in particular, a carbon tax was seen as a necessary concession to strong public concern that Canada wasn’t doing its part to mitigate global warming. Recognizing that the oil sands had a terrible reputation around the globe, oil interests hoped they could earn public favour by supporting a carbon tax. And politicians including Justin Trudeau pitched the carbon tax as an integral part of an indivisible package: we need to tax carbon to reduce emissions, while at the same time building new pipelines to ensure that oil sands extraction continues to grow.1

The common element in all of these fossil fuel corporation strategies is that there must not be any strict regulatory limit on carbon emissions – we must trust “the market”, in all its infinite wisdom, to arrive at emissions reductions. (When fossil fuel interests want subsidies, or need government help to get their products to market, then of course it is quite alright to deviate from free market principles.)

Gutstein makes clear that the level of carbon taxes advocated by fossil fuel interests is far too low to have a significant impact either on their profits or on national carbon emissions. Likewise, he says, the imposition of carbon taxes alone cannot substitute for the wide range of regulatory measures and incentives needed to make a rapid transition away from a fossil fuel economy. But he leaves unanswered another question: does he think carbon taxes could play an important role if they were set high enough to be effective, and were part of an appropriate package of other rules and incentives? In other words, if our political parties move beyond their fealty to neoliberal free-market ideology, should they enact effective carbon taxes?

The final corporate PR strategy that Gutstein discusses is the trend for fossil fuel companies to embrace the “market opportunity” of leading the transition to new energy systems. By publicizing their corporate efforts to buy wind turbines, study battery technology, or build heavily-subsidized prototypes of carbon-capture-and-sequestration plants, fossil fuel companies would like us to believe they are leading the way into a clean green future. But the important action happens behind the scenes, as fossil fuel companies continue to fight against any effective and compulsory limits on carbon emissions.

A clean green future? Major graphics in this article are stills from an Alberta-government funded tv ad series promoting the TransMountain Pipeline expansion. The ads do not show images of pipelines, tar sands open-pit mines, tailings ponds or refineries – just prosperous people and unspoiled environments. (At keepcanadaworking.ca.) Since the ads are paid for by a provincial government, and the TransMountain Pipeline is now owned by the federal government, fossil fuel industry adherence to “free market” principles can be flexible indeed.


FOOTNOTES

By the time The Big Stall was published, Trudeau’s grand bargain was in danger of failing on both fronts. Court cases and business decisions had delayed or cancelled most of the pending pipelines that would facilitate oil sands expansion. In the meantime the minimal carbon tax Trudeau has promised has been dubbed the “job-killing carbon tax” by the new Premier of Ontario and the federal Conservative Party, and the scheduled tax is now vehemently opposed by provincial leaders in about half of the country.

When good is not enough – extending the bicycle’s reach in The Netherlands

Also published at Resilience.org

The Netherlands has a worldwide reputation as a bicycle-loving country – but bikes account for only a small proportion of kilometers travelled.

While the Dutch have given far greater official support to bicycling than other industrialized countries have, the dominance of car culture is still a fact of life in The Netherlands.

The government publication Transport and Mobility 2016 includes the section heading “The Dutch and their sacred cow” – and the authors aren’t referring to the bicycle. Rather, they note that over half of the adult population, and 71% of households, owns a car. This proportion rises to 84% of rural households, and 90% of high-income households.

Using figures from 2014, the publication states that 28% of trips made are by bicycle and 18% are by foot –  but these trips tend to be short. Overall, 73% of kilometers traveled within the country are by car, with 9% by bike, 9% by train, 3% by other land-based public transport, and 3% on foot.

What are the most promising ways to shift a significant portion of this travel to carbon-emissions-free or low-carbon modes? Trips for education only account for 7% of kilometers traveled, and 80% of Dutch students under 15 already bike to school, so additional improvement in that category will be hard to achieve.

Commuting is the biggest single category of kilometers traveled. In common with other countries, the Dutch spend a disproportionate amount on roadways to accommodate more cars. But unlike most other countries, the Dutch are also investing substantially in infrastructure that makes it possible for more people to get to work without getting into a car.

Steel wheels and rubber tires

Building the Cycling City, published by Island Press, August 2018

In their excellent work Building the Cycling City: The Dutch Blueprint for Urban Vitality, Melissa and Chris Bruntlett discuss two areas of focus in efforts to increase bicycles’ modal share. (See the first part of a look at this book here.)

Cycling is the most common form of transportation in the country for short trips – 3 to 5 km – but most commutes are significantly longer than that. Fortunately, the country has also maintained a highly effective train network, and trains and bikes are now working symbiotically.

The Bruntletts note that “the nationwide [rail] system serves over 1.2 million passengers each and every day, half of whom bookend their train travel with bicycle rides.” (Building the Cycling City, page 140)

A small infrastructure program has been essential in promoting bike-train trips. Because the train system is already well used, there is no room on trains for bikes at rush hour. Therefore people are encouraged to keep one bike at home to ride to the local train station, and another one on the other end to pedal from the train station to the workplace. (That’s one reason the country now counts more bicycles than people.)

To be secure in this practice, people need safe bike parking adjacent to all train stations. Thus you can now find bike parking facilities at every train station – for hundreds of bikes in smaller towns, thousands of bikes in small cities, or tens of thousands of bikes in bigger cities.

This covered bike-parking facility is in the northern city of Groningen, adjacent to the train station.

The most impressive of these efforts is in the southern city of Utrecht. A large university town just a short train ride away from Amsterdam, Rotterdam, Leiden and Den Haag, Utrecht boasts the country’s busiest train station. To ensure that many of the rail passengers don’t need to rely on motorized transportation to get to or from the station, the station is now the site of the world’s largest bike garage, in a complex which holds 22,000 bikes and will hold 32,000 when completed.1

A state-of-the-art bike parking garage in downtown Utrecht. Gently sloping ramps wind from the street up through the three levels of parking, and electronic signs at the ends of aisles tell cyclists where free spaces are located.

The largest of the facilities holds 12,500 bikes of standard or close-to-standard sizes, while a separate facility can accommodate delivery bikes and bakfiets – long bikes with a large box that can hold up to three children. The garages are fully sheltered from weather, are constantly monitored, and most are open 24 hours a day while some sections are open “only” from 6 am to midnight. With so many cyclists using the facilities, it also makes sense to have a service and repair shop on site.

This attention to the needs of people with bikes may sound expensive. But clearly a 12,000-bike parking facility is far less expensive in both Euros and land area than a comparable-capacity car parking garage, or the kind of bus terminal that would be required to get all those people in and out of the train station by bus. And making the bike-train combo safe and convenient pays big dividends: Transport and Mobility 2016 notes that “An inhabitant of Utrecht differs from the inhabitants of the other provinces in making the most trips as well as the most kilometres by bicycle and train.”2 (Emphasis mine.)

Electrification

During my first week in The Netherlands, I was bent over the handlebars fighting a fierce wind when an elderly woman, sitting bolt-upright in the breeze, passed me with little apparent effort. I thought, “Wow, these Dutch people are really fit!” After the same thing had happened several more times, I caught on and learned to recognize electric-assist bikes3 by their characteristic battery location.

The Bruntletts note that

“Despite its mostly flat terrain, the Netherlands has emerged as the world’s largest pedelec market per capita, with electric bikes making up almost a third of new bicycle sales in 2016. Denmark is a close second ….” (Building the Cycling City, page 50)

There is a very good reason that The Netherlands and Denmark are such good markets for electric-assist bikes: they have the infrastructure that allows safe riding on an extensive network of protected bike lanes. Citing European Cyclists Federation development director Kevin Mayne, the Bruntletts say “the places with the best bike infrastructure are the ones that sell the most pedelecs, and the global e-bike market won’t fulfill its potential without great places to ride.” (Building the Cycling City, page 87)

But with safe infrastructure and traffic conditions in place, pedelecs have the potential to get people out of cars for longer commutes, not just short rides.

Within the city of Groningen where distances are small, cycling already has a 61 percent modal share, which the city hopes to increase to 67 percent. The Bruntletts write

“What would be more impressive would be to increase the current 12 percent of people arriving by bike from outside the city …. E-bikes will play a crucial role in any such increase by lengthening the average commute distance from eight kilometres to twenty kilometres with very little additional effort from riders.” (Building the Cycling City, page 64)

Elsewhere in the country, a small network of snelfietsroutes (“fast cycling routes”) are being built between major residential and commercial centers. Designed not for scenic appeal but with the straight-forward goal of promoting efficient bike commuting from city to city, these routes also appeal to cyclists who may not be up to an athletic workout five days a week, but would still like to bike their long-ish commutes. Electric-assist bikes have already proven very popular on these inter-city routes.

In general there is no need for specific public infrastructure to support pedelecs, if there is already a comprehensive network of safe lanes for ordinary bikes. Yet the presence of charging stations could make even longer rides practical – for example, the kind of rides that would use most of the battery power on a one-way trip, requiring a re-charge before the return trip. Some employers are now providing charging stations in bike garages at work, and I spotted this station outside a popular restaurant along a well-used cycling route.4

Public bike-charging station in Stellendam, South Holland

As with parking garages, charging stations for bikes take up much less space than charging stations for an equivalent number of cars. And since e-bikes consume far less energy than e-cars, charging infrastructure is far less technically demanding and far less expensive. (Pedelec batteries are rated in Watt Hours while electric car batteries are rated in KiloWatt Hours.)

Post-script: follow the red-brick road?

As Melissa and Chris Bruntlett so engagingly document, The Netherlands has done far more than other industrialized countries to safely integrate bicycles into their overall transportation system, with great results for public health and for the vitality of their cities. One result of the national habit of cycling is that the transportation sector in The Netherlands is accountable for just one-fifth of the country’s carbon emissions, compared to one-third in the US.

While the Dutch have a commanding lead when it comes to effective promotion of everyday cycling, they have achieved this in the context of a transport system where cars remain dominant. Most households own cars, most kilometers are traveled by car, and many features of daily life and of the national landscape will be entirely familiar to people living in other car cultures.

Outside the core urban areas, a hierarchy of speed rules just as it does in many other countries – the spacing is just tighter. The US Library of Congress report “National Funding of Road Infrastructure: Netherlands” states

“According to European statistical sources, the highest motorway density in Europe is found in the Netherlands (78 km per 1000 km² on average in 2009), Luxembourg (59), and Belgium (58).”5

Motorway interchange near Schiphol airport

As noted earlier, more affluent citizens are more likely to own and use cars for their commutes, and they also tend to commute longer distances. For a small, densely populated country which clearly values its farmland, the motorways take up a surprising amount of space in rural areas. Furthermore, dedicated high-speed car-and-truck lanes also impose their geometry on slower-speed travellers. While cycling through the countryside, for example, you need to find the infrequent roads that cross the motorways, where you may bike up and over the dedicated high-speed transport lanes. Likewise if you’re pedaling a bikeway alongside an expressway, you need to take a detour each time you come to an interchange, with a wide curve around the sprawling clover-leaf interchanges. These impositions on cyclists and other low-speed travellers are deemed necessary to allow uninterrupted high-speed travel on the expressways.

But what if, as a world community, we finally embark on the serious kind of energy and lifestyle revolution that is needed to adequately reduce carbon emissions? Or – a more likely scenario in our current political scene – what if we run short of cheap fossil fuels without finding a technological miracle to allow our high-energy lifestyles to continue with low-intensity fuels such as solar and wind-power? What sort of challenges will we face in transforming our transportation infrastructures?

The Netherlands will clearly have a head start in such a transition. Yet as I cycled through the countryside, it often struck me that there too, the road system is astonishingly overbuilt. Frequently I found myself biking on a dedicated bike path, beside a two-lane service road, beside a multi-lane expressway, with another service road and bike path on the other side.

A generation or a few from now, when our descendants have through choice or necessity transitioned to a low-energy, and therefore low speed, transportation system, will they still need or want to devote such wide swaths of countryside to transportation? And if not, how will they repurpose some of those thousands of hectares of heavy-duty pavement?

In my first few days biking through The Netherlands I wasn’t always happy that many bike lanes are routed along old, somewhat rough brick roads – the surface just wasn’t as smooth, fast or  comfortable to bike on as a well-maintained asphalt surface.

But then I reflected on the almost endless repairability and reusability of those brick roads. From my own work experience I know that “recycling” asphalt and concrete pavements demands large amounts of high-intensity energy resources. But in The Netherlands I saw workers with simple hand tools re-laying old bricks and re-creating good-as-new roads.

I won’t be around to see it, but in the long term my guess would be that the centuries-old red brick roads of The Netherlands will be the ones that are renewed for centuries to come.

Centuries-old street in centre of Haarlem.

Next week: a look at new cycling infrastructure in Valencia, Paris and London in light of the infrastructure in The Netherlands.

 

Top photo: covered bike-parking facility next to train station in Groningen.


Footnotes

“A third big bicycle parking garage for Utrecht”, 17 April 2018, Bicycle Dutch website

2 Transport and Mobility 2016, Statistics Netherlands, page 19

3 While the “electric bikes” now seen in North America most often don’t require the rider to pedal at all, the variety common in The Netherlands has a motor which only kicks in while the rider is pedaling. These electric-assist or pedelec bikes thus amplify a rider’s strength, but don’t allow completely effort-free riding.

4 On the downside, ubiquitous availability of charging stations could lead more people to rely on the battery-assist mode almost exclusively, resulting in a steep drop-off in the exercise levels and health benefits of e-bike converts. See discussion of a recent European study at “Riding e-bikes does not lead to health benefits”, on A view from the cycling path, September 12, 2018

5 National Funding of Road Infrastructure: Netherlands”, US Library of Congress

A modest investment with major dividends: cycling culture in the Netherlands

Also published at Resilience.org

How would you describe the process in which a small country builds a 35,000 kilometer network of fully separated bike infrastructure – and traffic-calms 75 per cent of their urban streets to a speeds of 30 km/h (19 mph) or less?

Building the Cycling City, published by Island Press, August 2018

One apt analogy is “picking the low-hanging fruit”. While Dutch cycling policy has required only modest annual investment, it has resulted in cities where bikes are used for most short trips – five kilometers or less – which can be pedaled by ordinary citizens from age 8 to 80 with no great effort. Furthermore this policy has helped preserve historic urban centers by removing the need for intra-city expressways or vast parking lots, while also promoting a fit and healthy population.

These are some of the themes that come through in a recent book by Melissa and Chris Bruntlett. Building The Cycling City: The Dutch Blueprint for Urban Vitality provides an excellent overview of the different ways that transportation policy has developed in five Dutch cities. The book also shows how lessons learned there are now benefitting other cities including New York, Calgary, Vancouver, and San Antonio.

This article is based on the Bruntletts’ excellent work, as well as on my own four-week bike tour of the Netherlands in September and October.

Giving priority to the most vulnerable road users, not the least vulnerable

In cities throughout the industrial world in the 20th century, the lion’s share of public space became the domain of people engaged in a dangerous and polluting activity – driving cars. The Netherlands was no exception to this trend.

But by the mid-1970s, spurred in part by a growing number of traffic fatalities and in part by the OPEC oil embargo, a strong reaction to auto-dominance took hold in several Dutch cities.

In the northern city of Groningen, a plan to build big new roads through historic neighbourhoods prompted 24-year-old Max Van den Berg to get into municipal politics. Just seven years later, the city implemented a transportation policy promoted by Van den Berg and allied councillors. Their Traffic Circulation Plan

“proposed dividing the city center to four parts and forbidding cars to cross between those quarters. This made the inner city practically impenetrable with a car, leaving cycling and walking the best ways to get around. The plan didn’t completely remove motor vehicles from the equation – as public buses and delivery vans would retain limited access to parts of the core – but it came remarkably close.” (Building the Cycling City, page 53-54)

One result 40 years later is that distracted walking or cycling is not a capital crime in Dutch cities. Even at rush hour in Groningen, one can walk or pedal through the central city while engrossed in conversation, while focusing on a smart phone, or while writing the next great novel in your head – without fear of being squashed by a car.

The same pattern holds true in many other small- and mid-sized Dutch cities where the urban core is mostly free of the noise, pollution and danger posed by cars. While some cars and delivery vehicles creep through these districts, the drivers know that foot-powered residents have the right of way – not just at crosswalks or traffic lights but all along the length of narrow historic streets.

Above, a “scramble” in Groningen at rush hour, where cyclists going every direction smoothly negotiate their way through the intersection. Below, an intersection in the core of Leeuwarden, the capital city of the province of Friesland.

Today, Groningen’s traffic planning embodies a very basic principle: “pedestrians over cyclists, cyclists over public transportation, and public transportation over cars. Essentially, the most vulnerable users of the city have priority over the least ….” (Building the Cycling City, page 61)

The important but limited role of separated bike lanes

The Netherlands is justly famous for its vast network of protected bike lanes, not only along arterial roads within cities, but also throughout the countryside connecting every village, town and city.

The rules for when, where and how cycle lanes are built are now well defined. Basically, in areas where it is not practical to slow cars so that they travel at close to the speeds of bicycles, separated paths must be installed. In cities, this often means a street-side lane with a curb separating the bike traffic from car traffic. In most cases these cycle lanes run on both sides of the streets. Critically, the urban bike lanes are not carved out of the sidewalks – the realm of pedestrians, who are also to be protected and encouraged – but are achieved by narrowing or removing car lanes.

“Bicycle street. Autos are guests.”

On rural roads with moderately fast cars but low traffic volumes, separate bike lanes are not always installed but cars are expected to – and do, in my experience – pass bikes carefully and courteously, yielding to bikes whenever oncoming traffic makes it impossible to pass safely.

Alongside busier roads with traffic of 50–60 km/hr or faster, there are fully separated bike lanes. Often these run right beside the roads, but there are also many cases where the bike paths diverge from the roads significantly, providing a quieter ride and cleaner air for people on bikes.

A significant component of the system is the system of signage. Bicycle routes are marked by signs at nearly every intersection, with signs that are visually distinct from the directional signs for motorists. This makes it easy for a bike rider to navigate through new areas, without pulling out either a smart phone or a paper map. There are also hundreds of maps on metal signposts showing local cycling routes, with each province maintaining its own set of local route maps.

Above, a roadside sign showing local cycling routes in the northern province of Friesland. Below, a popular cycling route on the coast in the southern province of Zeeland.

 

All this infrastructure, of course, costs money – but is it expensive? That’s a matter of perspective, and the Dutch do spend more money on cycling infrastructure than other nations. Melissa and Chris Bruntlett write,

“The Dutch cycle because their government spends an astonishing €30 ($35 US) per person per year on bike infrastructure – fifteen times the amount invested in nearby England.” (Building The Cycling City, page 15)

Yet this €30 per person is a very small fraction of what the Dutch – and other nations – spend on auto infrastructure. According to official figures from 2015, “The Dutch government spends a total of 15 billion euros on traffic and transport” each year – meaning the cycling infrastructure expense is a bit more than 3% of the government transport and traffic budget.

For this €30 per capita, the Dutch have been able to preserve the character of their central cities, keep carbon emissions lower than in neighboring countries, and enjoy some of the best health in the world due to an active population and cleaner air. Given the cost of health care alone, the €30 per capita spent by the Dutch government to promote cycling is an astonishing bargain.

While infrastructure such as separated cycle paths is an important component of the cycle strategy, it is important to keep in mind that the Dutch did not immediately launch a major building program when they began to focus on cycling in the 1970s. Furthermore, even today about 75 percent of their roads do not have separate cycle lanes.

In their chapter on Amsterdam, Melissa and Chris Bruntlett explain,

“This cycling utopia was built on traffic-calming rather than bike lanes. Instead of constructing separated cycle tracks on every street, officials started with speed-limit reductions, parking restrictions, through-traffic limitations, and lane narrowing and removals.” (Building the Cycling City, page 93)

Cycle lanes are great, but you’ve got to get from home or office or school to the cycle lane, and that route must be safe before most urban residents will want to bike on a regular basis. If the route to and from a dedicated cycle path remains dangerous and nerve-wracking, only the daring folks who are already cycling are likely to get onto the cycle path.

Traffic-calming on most or all non-arterial roads, therefore, plays a crucial role in laying the groundwork for widespread use of separated bike lanes along major routes. Fortuitously, the cost of traffic-calming methods is generally very low, meaning that is an obvious place to start in a long-term strategy to boost active transportation.

In the next installment, I will look at ways the Dutch are extending the humble bicycle’s reach through an intentional symbiosis with their train network, and through the rapid uptake of electric-assist bikes. A third installment in this series will look at cycling promotion efforts in Valencia, Paris and London, in light of the Dutch example.

In the historic centre of Middelburg, province of Zeeland.


Top photo: mural and bikes in downtown Leeuwarden, Friesland

Can nuclear power extend the economic expansion?

Also published at Resilience.org and BiophysEco.

Richard Rhodes’ new book Energy: A Human History does an excellent job of describing the scientific and technological hurdles that had to be cleared in the development of, for example, an internal combustion engine which can convert refined petroleum into forward motion.

But he gives short shrift to the social and political forces that have been equally important in determining how technological advances shape our world. That internal combustion engine might be a wonder of ingenuity, but was there any scientific reason we should make multi-tonne vehicles the primary mode of transportation for single passengers in cities, drastically reconfiguring urban landscapes in the process? When assiduous research resulted in more efficient engines, did science also dictate that we should use those engines to drive bigger and heavier SUV’s, and then four-wheel-drive, four-door pick-up trucks, to our suburban grocery superstores?

Unfortunately, Rhodes presents the benefits of modern science as if they are all inextricably wrapped up in our current high-energy-consumption economy, implying that human prosperity must end unless we find ways to maintain this high-energy system.

In this second part of a look at Energy (first installment here), we’ll delve into these questions as they relate to Rhodes’ strident defense of nuclear power.

To set the context, Rhodes argues that the only realistic – and the most ethical – way forward is a gradual progression on the path we are already taking, and that means an “all energy sources except coal and oil” strategy:

“Every energy system has its advantages and disadvantages …. And given the scale of global warming and human development, we will need them all if we are to finish the centuries-long process of decarbonizing our energy supply – wind, solar, hydro, nuclear, natural gas.”1

Three key points here: First, Rhodes recognizes the severity and urgency of the climate problem.

Second, he believes we have been “decarbonizing our energy supply” for centuries. That is true with respect to intensity: we now release fewer units of carbon for each unit of energy than we did in the 19th century.2 But in an overall sense, we emit vastly more carbon cumulatively (and vastly more carbon per capita) than we used to. It is the overall carbon emissions, not the carbon/energy intensity ratio, that matters to the climate.

Third, while energy production via natural gas has relatively low carbon emissions at the point of combustion, there is wide recognition that methane leaks throughout the production/transmission chain are major sources of greenhouse gas emissions, which may counteract the benefits of switching from coal to gas. Rhodes makes only an oblique reference to this critical problem in current natural gas usage.

It’s the issue of nuclear power, though, that really brings out Rhodes’ rhetorical heat. Consider this ad hominem attack:

“Antinuclear activists, whose agendas originated in a misinformed neo-Malthusian foreboding of overpopulation (and a willingness at the margin to condemn millions of their fellow human beings to death from disease and starvation), may fairly be accused of disingenuousness in their successive arguments against the safest, least polluting, least warming, and most reliable energy source humanity has yet devised.3

If someone warns that a social or technological development is likely to result in mass death, does that logically mean they want mass death, or that they are indifferent to it? Obviously not. They may well be sincerely motivated by a desire to save lives – just as those who promote the same social or technological development might sincerely believe that is the best way to save lives and promote prosperity.

So I think it is Rhodes who is being disingenuous with his ad hominem argument – even though I happen to agree with some of his substantive points on the relative safety of nuclear power.

What could go wrong?

As one who has lived for fifteen years just downwind of major nuclear facilities – first a uranium processing plant, more recently a nuclear power generator – I’ve had lots of incentive to study the potential safety hazards of the nuclear power industry. And on the issue of the relative operating safety of nuclear power generation, my conclusions have been much the same as those Rhodes puts forth.

I frequently take a short bike ride along the Lake Ontario Waterfront Trail through the buffer zone around the Darlington Nuclear Generating Station. Is this a significant hazard to my health? Yes it is, but only because this route also requires me to share the road with trucks and cars for a few kilometers, and to ride right beside a stream of pollution-emitting traffic on Ontario’s busiest expressway.

As a close neighbour of nuclear facilities, my risk of death due to sudden catastrophic nuclear power accident is several orders of magnitude lower than my risk of death due to sudden catastrophic traffic accident. (Worldwide, well over a million people are killed in traffic accidents per year.4)

As for the health risk due to chronic exposure to the amounts of radiation that are emitted by a current Canadian nuclear generating plant, I fully concur with Rhodes’ more general conclusion: “Low doses of radiation are not only low risk; they’re also lost in the noise of other sources of environmental insult.”5

Likewise, I share Rhodes’ conclusion that shutting down our existing nuclear power plants for environmental reasons, while continuing to rely on coal for a significant part of electricity generation, is daft6 – we should replace carbon-emitting generating systems first.

In my region, I would be sorry to see Darlington Nuclear Station shut down if Ontario were still significantly reliant on gas-powered peaker plants, as it is now. And given that we have a very long way to go in electrifying personal transportation and home heating, our electricity demand may increase significantly, making the transition to a fully renewable electricity generation system that much farther down the road. In that context, I think our existing nuclear power plants are a better option environmentally than continued or increasing use of any fossil fuel, natural gas included, for generation of electricity.

But should we commission and build new nuclear power plants? That is a very different question. Rhodes recognizes that the economic viability of the nuclear power industry is very much in question, but he makes no significant attempt in Energy to resolve the economic question.

To adequately answer the economic viability question, we would need a much wider conception of science than the one that comes through in Rhodes’ book.7

Beyond physics and chemistry

The science Rhodes celebrates in Energy: A Human History falls almost entirely within very basic physics and chemistry. The discoveries and developments Rhodes discusses are highly significant, and they will always remain foundational – but they are not sufficient for a clear understanding of technological systems, which are also social phenomena.

A more recent scientific advance is essential in coming to grips with our current energy challenges. This is the concept of Energy Return on Investment (EROI). Over his long and distinguished career, ecologist Charles A.S. Hall posited that organisms, ecological communities, and human societies must derive more usable energy from their activities than the energy they invest in those activities. With this simple insight8, Hall gave economics a foundation in the very principles of thermodynamics that Rhodes reveres.

The resulting field of biophysical economics provides a deeper understanding of the socio-technological revolutions that Rhodes simply ascribes to “science”. After studying the Energy Return on Investment of major energy sources over the past 200 years, we can understand how the rapid exploitation of fossil fuels provided a huge boost in the the energy available to society, while simultaneously freeing the great majority of people from energy-procuring activities so that they could work instead at a wide variety of new activities and industries. We can understand that if any society is to use a high quantity of energy per person, while employing only a small number of people in its energy sector, then its energy sector needs a high rate of Energy Return on Investment.

With readily accessible supplies of coal, oil and natural gas, industrial civilization in the past 200 years has benefitted from a very high Energy Return on Investment. But with “sweet spots” exhausted or in depletion phases, the EROI of the fossil fuel economy has been in marked decline for the past few decades.

Thus one of the key questions about a supposed nuclear renaissance is, can the nuclear power industry achieve an EROI comparable to that of the fossil fuel economy we have known to date? Most published analyses say no9 – from an Energy Return On Investment standpoint, nuclear power generation is (at worst) not worth doing at all, or (at best) worth doing even though it will produce much more expensive energy than the energy we came to depend on during the twentieth century.

If nuclear power generation has a low EROI, in sum, it cannot and will not fuel a continued economic expansion.

Rhodes argues that nuclear power is vitally important because we really need it to extend our current model of prosperity to billions more people now and in coming generations, and he claims the mantle of science for this position. But a broader and deeper application of scientific analysis can deal with the economic viability questions about nuclear power that he simply sidesteps.

Illustration at top: high-voltage transmission lines on grounds of Darlington Nuclear Station, on north shore of Lake Ontario east of Toronto

 


NOTES

1Energy: A Human History, page 337 (return to text)

2This is a point explained in more detail by Vaclav Smil, who also gives a perspective on the relative degree of decarbonization. From 1900 to 2000, he says, “the average carbon intensity of the world’s fossil fuel supply kept on declining: when expressed in terms of carbon per unit of the global total primary energy supply, it fell from nearly 28 kg C/GJ [GigaJoule] in 1900 to just below 25 in 1950 and to just over 19 in 2010, roughly a 30% decrease; subsequently, as a result of China’s rapidly rising coal output, it rose a bit during the first decade of the twenty-first century.” Smil, Energy and Civilization: A History, page 270. (return to text)

3Energy: A Human History, page 336 (return to text)

4World Health Organization says there were 1.25 million traffic deaths in 2013. (return to text)

5Energy: A Human History, page 324 (return to text)

6This general statement must be qualified, of course, by noting that some particular nuclear plants should be shut down because their designs were inherently flawed to begin with, or because they have aged beyond the point where they can be maintained and operated safely. (return to text)

7Even if one accepts that the operating safety record of nuclear power stations is exemplary, there are the major issues of nuclear weapons proliferation, and the long-term storage of highly radioactive wastes. Rhodes doesn’t mention weapons proliferation, and he cavalierly dismisses the long-term disposal issue: “The notion that such waste must be successfully protected from exposure for hundreds of thousands of years is counter to how humans handle every other kind of toxic material we produce. We usually bury it, but we also discount its future risk, on the reasonable grounds that we owe concern to one or, at best, two generations beyond our own …” (Energy: A Human History, page 337, emphasis mine). Yes, that’s what we usually do, but in what sense is that “reasonable”? (return to text)

8Though the basic insight is simple, measuring and calculating EROI can be anything but simple. A key issue is deciding how far out to draw the boundaries of an analysis. As Hall, Lambert and Balogh noted in “EROI of different fuels and the implications for society” in 2014, “Societal EROI is the overall EROI that might be derived for all of a nation’s or society’s fuels by summing all gains from fuels and all costs of obtaining them. To our knowledge this calculation has yet to be undertaken because it is difficult, if not impossible, to include all the variables necessary to generate an all-encompassing societal EROI value”. (return to text)

9In Scientific American (April 2013) Mason Inman cited an EROI of 5 for nuclear electricity generation – lower than photovoltaic or wind generators, and only a small fraction of the EROI of 69 that Inman cited for global conventional oil production in 2011. In 2014 a meta-review of studies, EROI of different fuels and the implications for society, gave a mean EROI of 14 for nuclear power. A paper by the World Nuclear Association cites outliers among the published studies, highlighting a conclusion that nuclear generation of electricity has a higher average EROI than hydro or fossil fuel generating systems, and is “one order of magnitude more effective than photovoltaics and wind power”. (return to text)

Energy: A Human History – a slim slice of history and science

Also published at Resilience.org and BiophysEco.

“The population of the earth has increased more than sevenfold since 1850 – from one billion to seven and a half billion – primarily because of science and technology,” Richard Rhodes concludes at the end of his new book Energy: A Human History. “Far from threatening civilization, science, technology, and the prosperity they create will sustain us as well in the centuries to come.”1

Rhodes tells an engaging tale of energy transitions over some 500 years. Yet the limitations in his field of view become critical in the book’s concluding chapter, when he reveals which particular axe he is especially eager to grind.

Both the title of the book and its timing invite comparison with Vaclav Smil’s 2017 work Energy and Civilization: A History (reviewed here). There is a significant overlap, most notably in both author’s views that major energy transitions – from wood to coal, from coal to petroleum – have been multi-generational processes.

But Rhodes’ scope is far narrower, both in time and in geography.

Rhodes begins his story in sixteenth-century England. His cast of characters is overwhelmingly Anglo-American and male, with a sprinkling of western Europeans, and only a brief excursion outside of “western civilization” to discuss oil exploration in Saudi Arabia.

Smil, by contrast, starts his book in pre-history, with an erudite discussion of the energy implications of human evolution. He follows with more than 200 pages on developments in energy usage from ancient times to the Middle Ages, in Africa, India, China, Europe, and Mesoamerica.

Smil’s readers, then, arrive at his discussion of the industrial revolution and the fossil fuel era with an understanding that millennia of progressive developments, around the world, had gone into the technologies and social organizations available to sixteenth-century Englishmen.

The unspoken implication in Rhodes’ tale is that the men of the Royal Society of London started with a blank slate, and all our current technological marvels are due wholly to the magnificence of their particular current in science.

One question that never arises in Rhodes’ book is, how did it happen that a class of educated men had the time and resources to ponder theories, conduct long series of experiments, and write and discuss their essays? There is no mention that during these same centuries, the countries of western Europe were drawing vast quantities of basic resources from Africa and the Americas, at the cost of millions of lives.

In short, this is a woefully incomplete history of energy. But within those limitations, Rhodes writes engagingly and with admirable clarity.

A thermodynamic page-turner

For anyone interested in basic issues of physics and technology, the progression from scattered awareness of curious phenomena, to testable theories, to technologies that were applied on a mass scale and changed everyday life, makes a fascinating story. For example, observations of static electricity from a cat’s hair, frightening strikes of lightning, and the effects of magnets eventually grew into a comprehensive theory of electromagnetism. Rhodes ably outlines how this led through development of crude batteries, then to simple generators, and eventually to the construction of a massive generator harnessing some of the power of Niagara Falls for a new phase of the Industrial Revolution.

Likewise, his discussion of the long gestation of the coal-fired steam engine – which depended on an understanding of basic issues of thermodynamics as well as refinements in metal-working needed for the construction of high-quality boilers – illuminates important factors in the birth of the fossil-fuel era.

An excellent section on early oil drilling and refining processes leads to a fascinating aside: the profitable introduction of lead as a performance-enhancing additive to gasoline, notwithstanding severe health effects which were noticed and decried at the earliest stages of the leaded gas era.

Credit where credit is due

The social effects of these developments in basic and applied science have been sweeping and many of them have been salutary. It would be foolish to deny that science has played a major role in increasing life expectancy and making rapid population growth possible.

Yet many historians would argue that social and political factors such as labour rights and the push for universal education have been equally important.

Of most direct importance to Rhodes’ subject, it is clear that science was critical in helping us understand principles of thermodynamics and helping us harness the power in both fossil fuels and and renewable resources. But science has not decreed that, once having learned to extract and consume fossil fuels, we should use up these resources as fast as humanly possible. That trend, rather, is due to an economic system that requires profits to increase continuously and exponentially.

Likewise, science taught us how to use the fossil fuel resources which have helped boost our population seven-fold in the past 170 years. But science did not create those resources, which were cooking in the earth’s cavities for millions of years before the first protohuman scientist conducted the first experiment.

If, following Rhodes’ thinking, we give science the whole credit for making a population explosion possible, we should also credit science with blowing through millions of years of accumulated energy resources in just a few hundred years. We should give science credit for the fact that billions of people live in areas already being severely impacted by climate change caused by fossil fuel emissions (even though those people typically have used minimal quantities of fossil fuel themselves.) And we should ask, why can’t science come up with a cost- and time-effective way of replacing all those fossil fuels, so that all 7 billion of us plus our more numerous descendants can keep on living the high-energy lifestyle to which (some of) us are accustomed?

Ah, but science has already found a big part of the next answer, Rhodes might answer: nuclear power.

The questions raised by Rhodes’ concluding sections on nuclear power are complex, and we’ll dive into those issues in the next installment.

Illustration at top: “Bridge over the Mongahela River, Pittsburg, Penn.” from the Feb 21, 1857 edition of Ballou’s Pictorial, accessed via Wikimedia Commons


1Energy: A Human History, page 343

Kings of the Yukon: a travel story as deep and wide as the great river

Also published at Resilience.org.

It’s a simple truth: the slower you travel the more you see.

Kings of the Yukon, by Adam Weymouth, published by Penguin in the UK, Little, Brown in the US and Random House in Canada

This was impressed on me in the summer of 1988, as I traveled through the Yukon Territory at the frenetic pace of a bicycle tourist. Where the highway occasionally crossed the Yukon River, I sometimes shared campsites with a more patient breed of traveler, the drifters.

Arriving at the riverbank with little more than a sleeping roll and an axe, they had fashioned crude rafts and set themselves afloat in the current for weeks at a time. The stories they told – of rounding a bend and surprising a moose cow and calf swimming through an eddy, or waking up in the strange light of the subarctic midnight and not knowing where they were or what century they might be in – have held my imagination ever since.

British writer Adam Weymouth is a even better story teller than anyone I met that summer. His new book Kings of the Yukon recounts a 2000-mile canoe trip, from the upstream end of the river’s tributaries to its sprawling delta on Alaska’s Bering Sea coast.

As a travel tale the book is first-rate. But Weymouth’s keen interest in the Chinook – aka King – Salmon, and his listening skills when he meets dozens of river-dwellers whose cultures have been shaped by the migrations of this fish, combine to fascinating, awe-inspiring, and often heart-breaking effect.

When he begins his river journey at McNeil Lake he is just three days removed from his home in London. After a few weeks paddling downstream, however, his senses have changed to suit the new setting:

 

“I am able to focus in on a fleck of white from half a mile away, and spot a bald eagle sitting motionless, scarcely aware how I have done it. I find that I can tell a species of a tree by how it is moving in the wind, how the aspen leaves twinkle but the birch’s quiver. … I had always thought that learning birdsong was beyond my capabilities, but out here the songs are starting to stick: the dark-eyed junco, which sounds like a telephone ringing; the white-crowned sparrow; the raucous kingfisher. Despite my many years of city living, I think perhaps I might not be a lost cause after all.”

It’s not as easy to get to know the fish, which mostly slip by his canoe cloaked in impenetrably silty river water. Fortunately he can learn from people who have spent generations understanding the comings and goings of salmon.

There was a time when many great rivers in Europe and North America teemed with salmon. Gifted with the rare ability to live in both fresh water and salt water, many salmonids are born in shallow stream beds, travel far downstream and into the open oceans, and then return against the currents several years later to spawn in the same spots where they were born. But today deforestation, over-fishing, and the construction of dams have decimated salmon populations.

In the untamed rivers where salmon remain strong they are a prized food source. Their dependable migrations, plus the nutritious oils between their skins and flesh, make them a superb source of energy for people who must make it through long cold winters.

 

A steep decline

The Yukon River system is one of the richest remaining salmon habitats – but there too populations of some species have seen a steep decline. The Chinook Salmon, the largest and most prized salmon species in North America, has dropped both in numbers and in average size.

When I camped at an informal squatter’s village outside Dawson City in 1988, river rafters tipped me off to a great bargain – fresh whole Chinook salmon, sold for $2 a pound from coolers on the back streets of town. The resulting campfire feast was so memorable I wanted to share the experience with my son on our bike trip through the Yukon twenty years later. Alas, I was told the fish had become scarce, quotas were severely restricted, and sales were now banned.

A disappointment for a tourist – but a tragedy for the many native communities along the river. The most moving passages in Kings of the Yukon come when people share their feelings about the deep changes being forced on their cultures. For generations people have marked the seasons by the passage of the salmon, and the rituals of setting nets, stocking smoke-houses, cutting and slicing and drying the red-orange fillets into stores of dried fish which will last through the winter. Now they struggle to decide if they can catch just enough fish each year to pass on their culture to the next generation – or if even that minimal harvest will prevent salmon populations from rebuilding.

There are many viewpoints on why Chinook Salmon numbers have dwindled, and Weymouth is clear-eyed and even-handed in his treatment. He makes clear, too, why the salmon are important not just to people, but to the earth’s largest ecosystem, the boreal forest. The vast river systems ceaselessly carry silt and minerals – soil fertility – out to the oceans. But uncounted millions of salmon carry this nutrition back upstream to their spawning grounds where they reproduce and then die.

Besides humans, bears are the famously photogenic beneficiaries of the salmon runs. But the bears typically eat just the choicest parts of the salmon they toss from the rivers; most of the fish will decompose on the forest floor, and the very trees are dependent on a cycle of nutrition that spans many years and many thousands of miles.

Weymouth braids many strands into his story – the distinctive native cultures that spread out from coastal delta to arctic tundra, from rain forests to distant mountain lakes; the devastating epidemics introduced by whalers, traders and missionaries; the ongoing social catastrophe set in motion by a residential school system consciously designed to put an end to native ways of life; the rhythms of seasonal subsistence fishing camps and massive industrial processing plants; even the distribution centre that eventually sends plastic-wrapped slices of salmon to supermarkets throughout Britain.

By the time he paddles out the seven-mile wide mouth of the Yukon into salt water waves, four months have passed, darkness has begun its takeover of the subarctic nights – and his readers have absorbed as good an introduction to northern life as they could hope to find in a single volume.

Illustration at top: “Chinook Salmon, Adult Male”, from plates in Evermann, Barton Warren; Goldsborough, Edmund Lee (1907) The Fishes of Alaska, via Wikimedia.

First principles for sustainable and equitable transportation

A review of Beyond Mobility

Also published at Resilience.org.

Beyond Mobility, Island Press, December 2017

Subway systems, trams, Bus-Rapid-Transit, high-speed trains, cars – these can all play useful roles in well-designed transportation systems. But we must not forget what still is and what should remain the world’s most important transportation method: walking.

That is one of the key messages of Beyond Mobility: Planning Cities for People and Places, a survey of urban planning successes and failures around the world.

Authors Robert Cervero, Erick Guerra and Stefan Al set out a general framework for transportation planning, in which the metric of “number of cars moved per hour” is replaced by an emphasis on place-making, with intergenerational sustainability, social equity, safety, and decarbonization as essential goals. The introduction to “urban recalibration” is followed by brief case studies from dozens of cities throughout the world.

First, do no harm to pedestrians

“For all the emphasis on cars and transit, walking remains the most globally important mode of transportation,” the authors write. “Globally, almost 40 percent of all trips are made by foot, and the figure is close to 90 percent in many smaller and poorer cities.”

In the Global South as in western Europe and North America, official transportation planning is dominated by the motoring classes, to the detriment of those who want to or have no choice but to walk. But Beyond Mobility cites many reasons why building safe cities for walkers is a global issue:

“Because walking produces almost no local or global pollution, creates no traffic fatalities, costs residents only the food needed to power their legs, has proven health benefits, and requires low infrastructure investments relative to highways or transit, maintaining high walking rates is critically important in the Global South.” (Beyond Mobility, page 173)

The public health consequences of a planning preference for automobiles are especially severe in the Global South, with deaths from air pollution and traffic accidents highest among the very people who cannot themselves afford cars. Therefore a shift in transportation policy is an obvious social equity issue.

In North America, after generations in which urban residents moved away from city cores to widely spaced suburbs, the trend is now reversing. The downtown areas of many major cities are once again highly sought after by residents and would-be residents, leading to huge price premiums for central-city residential properties.

A key reason for this preference is walkability. While time spent commuting by car tends to be stressful and unsatisfying1, a new generation has discovered the physical, emotional and social benefits of routine walking to work, school, shopping and entertainment.

This urban renaissance comes with obvious problems due to gentrification. A big part of the problem is scarcity: particularly in North America, desirably walkable neighbourhoods are now rare, while most urban residents must settle for neighbourhoods where basic services are distant and transportation options are expensive in terms of money, time, and/or personal safety.

Mobility when necessary, but not necessarily mobility

Real estate ads for suburban residences frequently highlight a key selling point – “close to the expressway”. By design, employment zones and residential districts are generally far apart in the post-war North American suburb. That has led to a situation where an important attribute for a residential neighbourhood is how easy it is to get far away from that neighbourhood each morning.

It’s a daunting task to reverse that trend, to change suburban settlement patterns to the point where many residents can work, shop, go to school, visit friends or go out to eat without getting into a car or boarding a train. Yet efforts at “sprawl repair” have begun in many places. Many of these efforts are guided by the concept of “place-making”, a central idea in Beyond Mobility. The authors quote urban designer Jan Gehl: “Place-making is turning a neighborhood, town or city from a place you can’t wait to get through to one you never want to leave.”2

Suburban shopping malls and suburban office parks come in for particular scrutiny. Both facilities are typically surrounded by hectares of parking lots. In theory it should be possible to redevelop these facilities (especially the many shopping centres which already stand vacant), creating more intensive mixes of residential, employment, commercial, educational and entertainment uses. The authors note that “One of the saving graces of huge surface parking lots is they can be easily torn up and rebuilt upon.” More generally, they state that

“Fortunately, suburban landscapes are malleable and for the most part can be easily adapted, modified, and reused. … In many ways, suburbs are the low-hanging fruit in the quest to create sustainable, highly livable, and more accessible places.” (Beyond Mobility, page 89–90)

This optimism notwithstanding, examples of successful suburban reconfigurations are rare in this book. In many cases, the authors note, redevelopment of a particular shopping mall or office complex produces an attractive mini-mix of services in a compact area, but is still too distant from most services to be “the kind of neighbourhood you never want to leave”.

One redevelopment option which is conspicuous by its absence in the pages of Beyond Mobility is what we might call the Detroit option. Instead of replacing empty suburban pavement with more intensive building patterns, perhaps there are some suburban districts which should become less intensive, returning to agricultural uses which would boost the sustainability of an urban area in other important ways.

Cycling receives very little attention in the book, even though two-wheeled, human-powered vehicles are already meeting the need for medium-distance transportation in many cities, with minimal infrastructure costs, many public health benefits, and almost no disruption of the primary transportation method, walking. The chapter on autonomous vehicles is also a bit of a puzzle. Though the authors are “cautiously optimistic” that driverless cars will enable a better “balance between mobility and place”, their discussion highlights several reasons to believe this technology may result in more Vehicle Miles Traveled and a greater disconnection from the social environment.

When it comes to transformational changes to the cores of major cities, however, the book is full of inspiring examples. In cities from San Francisco to Seoul, Bogotá to Barcelona, freeways have been replaced with boulevards, intersections have been reconfigured to make passage safer and more pleasant for pedestrians, single-use office complexes have incorporated retail and affordable housing, “park-and-ride” train stations have moved closer to an ideal of “walk-and-ride” as surrounding blocks are redeveloped.

Many of these urban recalibration efforts have their own flaws and limitations, but the value of Beyond Mobility is an even-handed recognition of both successes and failures. Above all, the authors emphasize, equitable, sustainable and convivial cities can’t be created all at once:

“urban recalibration calls for a series of calculated steps aimed at a strategic longer-range vision of a city’s future, advancing principles of people-oriented development and place-making every bit as much as private car mobility, if not more. … It entails a series of 1 to 2 percent recalibration ‘victories’ – intersection by intersection, neighborhood by neighborhood — that cumulatively move beyond the historically almost singular focus on mobility, making for better communities, better environments, and better economies.” (Beyond Mobility, page 211)

 

Top photo: Streets of Hong Kong, China, East Asia, photo by Mstyslav Chernov, via Wikimedia Commons


NOTES

1“Behavioral research shows that out of a number of daily activities, commuting has the most negative effect on peoples’ moods.” Beyond Mobility, page 51, citing a Science article by Daniel Kahneman, “A Survey Method for Characterizing Daily Life Experience”, 2004.

2Beyond Mobility, page 13, citing Jan Gehl, Cities for People, Island Press, 2010.