Designing Climate Solutions – a big-picture view that doesn’t skimp on details

Also published at Resilience.org

Let us pause for a moment of thanks to the policy wonks, who work within the limitations of whatever is currently politically permissible and take important steps forward in their branches of bureaucracy.

Let us also give thanks to those who cannot work within those limitations, and who are determined to transform what is and is not politically permissible.

Designing Climate Solutions: A Policy Guide for Low-Carbon Energy is published by Island Press, November 2018.

An excellent new book from Island Press makes clear that both approaches to the challenge of climate disruption are necessary, though it deals almost exclusively with the work of policy design and implementation.

Designing Climate Solutions, by Hal Harvey with Robbie Orvis and Jeffrey Rissman, is a thoughtful and thorough discussion of policy options aimed at reducing greenhouse gas emissions.

Harvey is particularly focused on discovering which specific policies are likely to have the biggest – and equally important, the quickest – impact on our cumulative greenhouse gas emissions. But he also pays close attention to the fine details of policy design which, if ignored, can cause the best-intentioned policies to miss their potentials.

One of the many strengths of the book is the wealth of graphics which present complex information in visually effective formats.

A political acceptable baseline

Though political wrangling is barely discussed, Harvey notes that “It goes without saying that a key consideration of any climate policy is whether it stands a chance of being enacted. A highly abating and perfectly designed policy is not worth pursuing if there is no chance it can be implemented.”

He takes as a starting point the target of the Paris Agreement of 2015, which has received agreement in principle from nearly all countries: to reduce emissions enough by 2050 to give us at least a 50% chance of avoiding more than 2°C global warming. (We’ll return later to the question of the reasonableness of that goal.)

Throughout the book, then, different aspects of climate policy are evaluated for their relative contributions to the 2°C goal.

Working with a climate policy computer model which is discussed in detail in an appendix and which is available online, Harvey presents this framework: a “business as usual” scenario would result in emissions of 2,253 Gigatons of CO2-equivalent from 2020 to 2050, but that must be reduced by 1,185 Gigatons.

The following chart presents what Harvey’s team believes is the realistic contribution of various sectors to the emission-reduction goal.

“Figure 3.4 – Policy contributions to meeting the 2°C global warming target.” (From Hal Harvey et. al., Designing Climate Solutions, Island Press, page 67)

The key point from this chart is that about 70% of the reductions are projected to come in three broad areas: changes to industrial production, conversion of electrical generation (“power sector”) to renewable energy, and cross-sector pricing of carbon emissions in line with their true social costs.

(The way things are categorized makes a big difference. For example, agriculture is slotted as a subset of the industrial sector, which boosts the relative importance of this sector for emissions-reduction potential.)

Harvey buttresses the argument by looking at the costs – or in many cases, cost-savings – of emissions-reduction policies. The following chart shows the relative costs of policies on the vertical dimension, and their relative contribution to emissions reduction on the horizontal dimension.

“Figure 3.2 – The policy cost curve shows the cost-effectiveness and emission reduction potential of different policies.” (From Hal Harvey et. al., Designing Climate Solutions, Island Press, page 59)

 

The data portrayed in this chart can guide policy in two important ways: policy-makers can focus on the areas which make the most difference in emissions, while also being mindful of the cost issues that can be so important in getting political buy-in.

It may come as a surprise that the transportation and building sectors, in this framework, are responsible for only small slices of overall emission reductions.

Building Codes and Appliance Standards are pegged to contribute about 5% of the emission reductions, while a suite of transportation policies could together contribute about 7% of emission reductions.

A clear view of the overriding importance of reducing cumulative emissions by 2050 helps explain these seemingly small contributions – and why it would nevertheless be a mistake to neglect these sectors.

To achieve climate policy goals it’s critical to reduce emissions quickly – and that’s hard to do in the building and transportation sectors. Building stock tends to last for generations, and major appliances typically last 10 years or more. Likewise car, truck and bus fleets tend to stay on the road for ten years or more. Thus the best building codes and the best standards for vehicle efficiency will have a very limited impact on carbon emissions over the next 15 years. By the same token, even the most rapid electrification possible of car and truck fleets won’t have full impact on emissions until the electric grid is generally decarbonized.

These are among the reasons that decarbonizing the electric grid, along with cross-sector pricing of carbon emissions, are so important to emissions reduction in the short term.

Meanwhile, though, it is also essential to get on with the slower work of upgrading buildings, appliances, transportation systems, and decarbonized agricultural and industrial processes. In the longer term, especially after 2050 when it will be essential to achieve zero net carbon emissions, even (relatively) minor contributions to emissions will be important. But as Harvey puts it, “There is no mopping up the last 10 percent of carbon emissions if we don’t eliminate the first 90 percent!”

International case studies

Harvey gets deep into the nuances of policy with an excellent discussion of the differences between carbon taxes and carbon caps. This helps readers to understand the value of hybrid approaches, and the importance in some countries of policies to limit “leakage”, whereby major industries simply shift production to jurisdictions without carbon prices or caps.

The many case studies – from the US, Germany, China, Japan, and other countries – illustrate policy designs that work especially well, or conversely, policies that have resulted in unintentional consequences which reduce their effectiveness.

These case studies also provide a reminder of the amount of hard work and dedication that mostly unsung bureaucrats have put in to the cause of mitigating climate disruption. As much as we may mourn that political leadership has been sorely lacking and that we appear to be losing the battle to forestall climate disaster, it seems undeniable that we would be considerably worse off if it weren’t for the accomplishments of civil servants who have eked out small gains in their own sectors.

For example, the hard-won feed-in tariffs and other policies promoting renewable energies for electric generation haven’t yet resulted in a wholesale transformation of the grid – but they’ve resulted in an exponential drop in the cost per kilowatt of solar- and wind-generated power. Performance standards for many types of engines have resulted in significant improvements in energy efficiency. These improvements have so far mostly been offset by our economy’s furious push to sell more and bigger products – but these efficiency gains could nevertheless play a key role in a sane economic system of the future.

The 2° gamble

Although most of the book is devoted to details of particular policies, Harvey’s admirably lucid discussion of the urgency of the climate challenge makes clear that we need far greater commitment from the highest levels of political leadership.

He notes that the reality of climate action has been far less impressive than the high-minded rhetoric. With few exceptions the nations responsible for most of the carbon emissions have been woefully slow to act, which makes the challenge both more urgent and more difficult.

Harvey illustrates this point with the chart below. The black solid and dotted lines represent the necessary progress with emissions, if we had been smart enough to ensure emissions peaked in 2015. The red lines show what may now be the best-case scenario – an emissions peak in 2030 – and the much more drastic reductions that will then be required to have a 50% chance of keeping global warming to 2°C or less.

“Figure I-7. The longer the delay in peaking emissions, the harder it becomes to meet the same carbon budget.” (From Hal Harvey et. al., Designing Climate Solutions, Island Press, page 9)

We might well ask if a 50% likelihood of worldwide climate catastrophe is a prudent and reasonable policy aim, or certifiably bonkers. Still, a 50/50 chance of disaster is somewhat better than assured civilizational collapse, which is the destination of “business as usual.”

In any case, the political climate has changed considerably in the short time since Harvey and colleagues prepared Designing Climate Solutions. With the challenge to the political status quo embodied in the Green New Deal movement, it now seems plausible that some major carbon-emitting countries will enact more appropriate greenhouse-gas emission targets in the next few years. If that comes to pass, these new goals will need to be translated into effective policy, and the many lessons in Designing Climate Solutions will remain important.

What about fossil fuel subsidies?

In a book of such wide and ambitious scope, it is inevitable that some important facets are omitted or given short shrift.

The issues of deforestation and forest degradation are duly noted, but Harvey declines to delve into this subject by explaining that “The science, the policies, and the actors for reducing emissions from land use are very different from those for energy and industrial processes, and they deserve separate treatment from experts in land use policy.”

The issue of embodied carbon does not come up in the text. In assessing the replacement of fossil-powered vehicle fleets by electric vehicles, for example, is the embodied carbon inherent in current manufacturing processes a significant factor? Readers will need to search elsewhere for that answer.

Also noteworthy is the absence of any acknowledgement that economic growth itself may be a problem. For all the discussion of ways to transform industrial processes, there is no discussion of whether the scale of industrial output should also be reduced. In most countries today, of course, a civil servant who tries to promote degrowth will soon become an expert in unemployment, but that highlights the need for a wider and deeper look at economic fundamentals than is currently politically permissible.

The missing subject that seems most germane to the book’s central purpose, though, is the issue of subsidies for fossil fuels. Harvey does state in passing that “for many sectors and technologies, pricing is the key. Removing subsidies for fossil fuels is the first step – though still widely ignored.” Indeed, many countries have paid lip service to the need to stop subsidizing fossil fuels, but few have taken action along these lines.

But throughout Harvey’s extensive examination of pricing signals – e.g., feed-in tariffs, carbon taxes, carbon caps, low-interest loans to renewable energy projects – there is no discussion of the degree to which existing fossil fuel subsidies continue to undercut the goals of climate policy and retard the transition to a low-carbon economy.

In my next post I’ll take up this subject with a look at how some governments, while tepidly supporting the transformation envisioned in the Paris Agreements, continue to safeguard their fossil fuel sectors through generous subsidies.


Illustration at top adapted from Designing Climate Solutions cover by David Ter Avanesyan.

the light of a nearby star

PHOTO POST

A tree at the base of the Port Darlington breakwater stands watch over wind and waves and grows a new coat during winter storms.

Last week’s blasts from the west whipped up the waves and funnelled splashes high into the tree.

Crescent (click images for larger views)

By the heat of the noon-day sun the glow was a glorious spectacle.

Splash, slowed

But the sun’s rise through this tree called me to the beach at dawn, day after day.

A moment of sunrise

Cold fire with twigs

Sunrise moment II

Convergence


Photo at top: Arcs (click here for larger view)

rumours of spring

PHOTO POST

When small talk first turns to the coming of spring, that’s generally a good sign that we’re entering another phase of winter – and I mean that in the nicest way.

The light is the most obvious, of course, with the sun rising much earlier and climbing higher. But we also start to see some of the earliest migrating birds.

The Long-Tailed Duck is primarily a sea bird and summers along the arctic coast. Though they are said to sometimes winter in the Great Lakes I haven’t yet spotted them here in mid-winter. In the past week several have been hanging around Port Darlington, sometimes mingling with the swans and buffleheads.

Twilight Buffet (click images for larger views)

It’s worth noting that only the male Long-Tailed Duck (top photo) sports the namesake appendage. The female (below) apparently functions quite well without those extra feathers.

Who needs that silly tail?

In February the stronger sun has worked with rain, snow, fierce winds and wildly fluctuating temperatures to sculpt new scenes along the waterfront each day.

Beach scene, sand

 

Beach scene, feather

 

Beach scene, ice

A recent storm distributed rounded chunks of ice across the beach, then coated the whole lot with a slick new surface of ice. This made for treacherous travel for a wobbly biped with a high center-of-gravity – even before a thick blanket of fluffy new snow hid all the hazards. In such conditions, obviously, it’s safer to make your pre-dawn rounds on all fours.

It’s this way

The break-up of ice takes a different form on our creeks, as recent rains pushed huge slabs through valleys and low-lying woods.

Water under the bridge

On the lake, massive walls of ice provided a shield for the shoreline until these formations were cut away by pounding waves.

Bergs

 

Whitewater

I’m happy to mark the last day of February in calm conditions with a celebration of the vivid colours at dawn and twilight.

Bright ripple

 

Cliff face

 

Blue whale

Top photo: Long-Tailed Dive (click here for larger view)

 

edge effects

PHOTO POST

Storm surges, snow squalls, frozen rain, creeks on the rise, ice jams, gale force winds, soft waves of slush – February’s weather has been, shall we say, entertaining. Here’s a small selection of pictures from the past week.

 

Quicksilver (click images for larger view)

What colour is ice, you might ask? After a fierce storm on Lake Ontario much of the ice is deep dark brown, as breaking waves have scoured up sand and pebbles, piling the mix into new peninsulas along the shoreline. The next day’s winds then carve out new fjords, bridges and islands.

Cathedral Ceiling

After frozen rain coats a log on the marsh, the sun carves equally complex patterns in the shimmer.

Waterlog

Where the geese have been, we can always find our feather-of-the-day.

Acrostic

Cold temperatures, bright sun, gentle waves spilling over beach pebbles – a recipe for beautiful edge effects.

Topography I

 

Topography II

Let’s have one more shot of cold water on the rocks:

On the rocks


Top photo: The light gets in (click here for larger view)

Of hope, grief, and humility

A review of Dahr Jamail’s The End of Ice

Also published at Resilience.org

If you’re looking for hope in Dahr Jamail’s new book The End Of Ice, the recommendation that Dr. Harold Wanless gives for Miami is about the closest you’ll find:

“Sea level rise is going to accelerate faster than the models, and it’s not going to stop,” he says. “So the government has to have a plan that includes buyouts. It’s cheaper to buy this area out than it is to maintain the infrastructure.” And before vacating most of the city,

The final thing is cleaning the land before inundation, and this is most important. We should be planning for that, including removing things in the buildings and industrial land that will pollute the marine environment, including low-lying areas in flood-plains. Otherwise we will give our kids a highly polluted new marine environment ….” (From The End of Ice: Bearing Witness and Finding Meaning in the Path of Climate Disruption, by Dahr Jamail, published by The New Press, January 2019

Is preparing for a new Atlantis a hopeful scenario? Well, it’s all relative. As South Miami mayor Dr. Philip Stoddard puts it, “Frankly, there is worse stuff than sea level rise. Most of the rest of the aspects of climate change are far worse. With sea level rise you can move, as compared to what do you do when the food supply disappears? How do you grow crops? How do we feed people? The answer is, not very well.”

Dahr Jamail is the author of three books growing out of his experience as an unembedded journalist in Iraq. But he says what he learned while researching The End Of Ice shook him even more deeply than did his reporting from Iraq.

He is also an experienced and dedicated mountaineer who has spent a big chunk of his life working with rescue teams on high-altitude glaciers in Alaska. Watching the rapid shrinkage of these glaciers has given him a personal window to the onset of climate disruption. But communion with these starkly beautiful environments also offers him a way to cope with the overwhelmingly frightening prognosis that he hears from climate scientists in the Arctic, the Amazon basin, south Florida and the coral reefs of the South Pacific.

Though most of the book consists of interviews with front-line scientists, a recurring theme is his struggle with despair, depression and a sense of meaningless when confronting what he is learning. For all of us who pay attention to the steadily worsening climate news, his reflections on hope, grief, and humility are an important part of his message.

Suffice it to say that most of his interview subjects think we have already blown our chances of keeping global average temperature rise to 2°C or less – even if, miraculously, all nations meet their Paris Agreement commitments. And if 3°C, 4°C or more of temperature rise has already been set in motion, then some truly devastating positive feedback loops are likely to follow. Two such feedbacks that Jamail discusses are rapid die-offs of forests in both the Amazon and the boreal regions, which would turn these forests into major carbon sources rather than carbon sinks; and the potential for an explosive release of long-frozen methane due to the warming of arctic permafrost.

Even without such feedbacks, many researchers believe that the IPCC reports have been underestimating risks for decades now. As Harold Wanless explains,

There are political games going on in the IPCC and their modelers can’t look beyond the model. The IPCC only uses stuff in refereed journals, which is already four to five years outdated, and they cut off three years early for peer review, so it is at least 10 years outdated ….”

Furthermore, Wanless says, the need for consensus in the IPCC reports results in “lowball projections” skewing the reports and downplaying the seriousness of our predicament.

With each successive IPCC report, the previous predictions are shown to have been too optimistic. The loss of Arctic sea ice is galloping ahead of official projections – “we already reached the amount of Arctic sea ice loss anticipated for 2050 back in 2002.”

(Today’s news offers further confirmation, as a major new report says even in the best-case scenario at least one-third of the Himalayan ice cap will be lost by 2100, while with a 4–5°C global warming, at least two-thirds of this ice will be gone by 2100.)

Unlike the Greenland glaciers or the ice sheets covering Antarctica (which many scientists believe are already on an unstoppable path to melting), mountain-top glaciers don’t hold enough water to play a large part in sea-level rise. These glaciers do, however, play essential roles in their regional ecosystems, and their disappearance will have devastating impacts on biodiversity, agriculture, and political stability for hundreds of millions or billions of people.

Mountain snow caps, Jamail explains, are like water towers – storing water throughout the winter and spring, and gradually releasing cold water into rivers and valleys in summer. The icewater shapes micro-climates as it flows down the hills, providing life-giving conditions for species dependent on cold water. Then it provides drinking water or irrigation water for some of the world’s major agricultural areas in foothills and plains.

If snowpacks melt too early due to winter rains or high spring temperatures, the water is gone long before it is really needed in summer. The consequences will be widespread, Jamail says:

Most people in the United States who don’t live in areas where some or most of their water source is reliant upon glaciers may think melting glaciers won’t impact them. But they would be wrong. Diminishing glaciers in the western United States will impact agriculture, driving up food prices everywhere. And globally, when the millions of people who rely on glaciers for their water and agriculture lose those glaciers, many of these people will have to leave their homes, becoming refugees.”

Jamail ends the book with an extended reflection on death, despair, grieving and gratitude. He finds solace in quiet time gazing at the sunset on the face of a mountain, though that time feels like the precious hours shared at an intimate friend’s deathbed. And he says he has learned to surrender hope: “I came to understand that hope blocked the greater need to grieve, so that was the reason necessitating the surrendering of it.” He adds,

“Grieving for what is happening to the planet also now brings me gratitude for the smallest, most mundane things .… My acceptance of our probable decline opens into a more intimate and heartfelt union with life itself. … I am grieving and yet I have never felt more alive.”

Perhaps each person must answer these questions their own way, and though I have immense respect for Jamail’s work and his conclusions, I cannot say I am ready either to fully embrace hope or to give it up.

Jamail also shares inspiration in the words of Stan Rushworth, an elder of Cherokee descent who relates the lessons imparted by his father. For me these words especially ring true. Rushworth says:

The dire position we’re in now is solid evidence of the fact that the predominant civilization does not have a handle on all the interrelationships between humans and what we call the natural world. If it did, we wouldn’t be facing this dire situation. … We simply do not have a big enough or right-minded enough vision. Because of this, we need to allow for something we cannot understand.

This is not about hope, but more, humility, and carefully considered action within that humility, and much deeper listening.”

Photo at top: Dahr Jamail, photographed by John Fleming, from the cover of The End of Ice

vortex

PHOTO POST

The Polar Vortex which just gave us an old-fashioned hint of arctic weather may not have been everyone’s cup of tea. But for anyone out sightseeing on the shore of Lake Ontario this weather has been hard to beat.

Way Out – February 1 (click images for larger view)

 

Sunset Wave – January 30

 

Dual Frequency – January 31

 

Steam Cloud – February 1

 

Two Goose Bridge – February 1

 

Fire Lake – January 31

 

Solar Light – January 28

 

Set The Table – January 31

 

Top photo: Vortex – January 30 (click here for larger view

Postscript: a word about safety

Lake Ontario shore ice can be deceptive and very dangerous. Even when a mass of ice appears solid, water can be forced underneath by the waves at high pressure. As a result there can be thin spots in unpredictable places. Before stepping out on such ice, you should know whether the water underneath is deeper than you can or want to stand in. Carry a very stout stick which you can use to test the solidity of the ice in front of you every single step. Do not be tempted to crawl to the edge of the overhang at water’s edge, since this ice may give way suddenly and topple you into the water. You should think carefully about what it would feel like to look up at a big wall of ice while you (briefly) bob up and down in frigid water. And what it would feel like to crash through a weak spot in the ice and then try to pull yourself back up through that hole, if you can find it. Those thoughts should put you in a properly cautious state of mine before venturing out on the ice. Key photo tip: let a zoom lens take you close to scene while you stay safely out of harm’s way.

 

Beyond computational thinking – a ‘cloud of unknowing’ for the 21st century

Also published at Resilience.org

New Dark Age: Technology and the End of the Future, by James Bridle, Verso Books, 2018

If people are to make wise decisions in our heavily technological world, is it essential that they learn how to code?

For author and artist James Bridle, that is analogous to asking whether it is essential that people be taught plumbing skills.

Of course we want and need people who know how to connect water taps, how to find and fix leaks. But,

learning to plumb a sink is not enough to understand the complex interactions between water tables, political geography, ageing infrastructure, and social policy that define, shape and produce actual life support systems in society.” (Except where otherwise noted, all quotes in this article are from New Dark Age by James Bridle, Verso Books 2018)

Likewise, we need people who can view our technological society as a system – a complex, adaptive and emergent system – which remains heavily influenced by certain motives and interests while also spawning new developments that are beyond any one group’s control.

Bridle’s 2018 book New Dark Age takes deep dives into seemingly divergent subjects including the origins of contemporary weather forecasting, mass surveillance, airline reservation systems, and Youtube autoplay lists for toddlers.  Each of these excursions is so engrossing that it is sometimes difficult to hold his central thesis in mind, and yet he weaves all the threads into a cohesive tapestry.

Bridle wants us to be aware of the strengths of what he terms “computational thinking” – but also its critical limitations. And he wants us to look at the implications of  the internet as a system, not only of power lines and routers and servers and cables, but also of people, from the spies who tap into network nodes to monitor our communications, to the business analysts who devise ways to “monetize” our clicks, to the Facebook groups who share videos backing up their favoured theories.

Wiring of the SEAC computer, which was built in 1950 for the U.S. National Bureau of Standards. It was used until 1964, for purposes including meteorology, city traffic simulations, and the wave function of  the helium atom. Image from Wikimedia Commons.

From today’s weather, predict tomorrow’s

Decades before a practical electronic computer existed, pioneering meteorologist Lewis Fry Richardson1 thought up what would become a “killer app” for computers.

Given current weather data – temperature, barometric pressure, wind speed – for a wide but evenly spaced matrix of locations, Richardson reasoned that it should be possible to calculate how each cell’s conditions would interact with the conditions in adjacent cells, describe new weather patterns that would arise, and therefore predict tomorrow’s weather for each and all of those locations.

That method became the foundation of contemporary weather forecasting, which has improved by leaps and bounds in our lifetimes. But in 1916, when Richardson first tried to test his ideas they were practically useless. The method involved so many calculations that Richardson worked for weeks, then months, then years to work out a ‘prediction’ from a single day’s weather data.

But by the end of World War II, the US military had developed early electronic computers which could begin to make Richardson’s theory a useful one. To military strategists, of course, the ability to predict weather could provide a great advantage in war. Knowing when a particular attack would be helped or hindered by the weather would be a great boon to generals. Even more tantalizingly, if it were possible to clearly understand and predict the weather, it might then also be possible to control the weather, inflicting a deluge or a sandstorm, for example, on vulnerable enemy forces.

John von Neumann, a mathematician, Manhattan Project physicist and a major figure in the development of computers, summed it up.

In what could be taken as the founding statement of computational thought, [von Neumann] wrote: ‘All stable processes we shall predict. All unstable processes we shall control.’”

Computational thinking, then, relied on the input of data about present conditions, and further data on how such conditions have been correlated in the past, in order to predict future conditions.

But because many aspects of our world are connected in one system – an adaptive and emergent system – this system spawns new trends which behave in new ways, not predictable simply from the patterns of the past. In other words, in the anthropocene age our system is not wholly computable. We need to understand, Bridle writes, that

technology’s increasing inability to predict the future – whether that’s the fluctuating markets of digital stock exchanges, the outcomes and applications of scientific research, or the accelerating instability of the global climate – stems directly from these misapprehensions about the neutrality and comprehensibility of computation.”

Take the case of climate studies and meteorology. The technological apparatus to collect all the data, crunch the numbers, and run the models is part of a huge industrial infrastructure that is itself changing the climate (with the internet itself contributing an ever-more significant share of greenhouse gas emissions). As a result the world’s weather is ever more turbulent, producing so-called ‘100 year storms’ every few years. We can make highly educated guesses about critical climatic tipping points, but we are unable to say for sure when these events will occur or how they will interact.

Age-old traditional knowledge of ways to deal with this week’s or this year’s weather is becoming less reliable. Scientists, too, should acknowledge the limits of computational thinking for their work:

In a 2016 editorial for the New York Times, computational meteorologist and past president of the American Meteorological Society William B. Gail cited a number of patterns that humanity has studied for centuries, but that are disrupted by climate change: long-term weather trends, fish spawning and migration, plant pollination, monsoon and tide cycles, the occurrence of ‘extreme’ weather events. For most of recorded history, these cycles have been broadly predictable, and we have built up vast reserves of knowledge that we can tap into in order to better sustain our ever more entangled civilisation.”

The implications are stark: “Gail foresees a time in which our grandchildren might conceivably know less about the world in which they live than we do today, with correspondingly catastrophic events for complex societies.”

World map of submarine communication cables, 2015. Cable data by Greg Mahlknecht, world map by Openstreetmap contributors. Accessed through Wikimedia Commons.

Lines of power

In many ways, Bridle says, we can be mislead by the current view of the internet as a “cloud”. Contrary to our metaphor, he writes, “The cloud is not weightless; it is not amorphous, or even invisible, if you know where to look for it.” To be clear,

It is a physical infrastructure consisting of phone lines, fibre optics, satellites, cables on the ocean floor, and vast warehouses filled with computers, which consume huge amounts of water and energy and reside within national and legal jurisdictions. The cloud is a new kind of industry, and a hungry one.”

We have already referred to the rapidly growing electricity requirements of the internet, with its inevitable impact on the world’s climate. When we hear about “cloud computing”, Bridle also wants us to bear in mind the ways in which this “cloud” both reflects and reinforces military, political and economic power relationships:

The cloud shapes itself to geographies of power and influence, and it serves to reinforce them. The cloud is a power relationship, and most people are not on top of it.”

It is no accident, he says, that maps of internet traffic trace pathways of colonial power that are hundreds of years old. And we shouldn’t be surprised that the US military-intelligence complex, which gave birth to internet protocols, have also installed wiretapping equipment and personnel at junctions where trans-oceanic cables come ashore in the US, allowing them to scoop up far more communications data than they can effectively monitor.2

These power relationships come into play in determining not only what is visible in our web applications, but what is hidden. Bridle is a keen plane-spotter, and he marvels at flight-tracking websites which show, in real time, the movements of thousands of commercial aircraft around the world. “The view of these flight trackers, like that of Google Earth and other satellite image services, is deeply seductive,” he says, but wait:

This God’s-eye view is illusory, as it also serves to block out and erase other private and state activities, from the private jets of oligarchs and politicians to covert surveillance flights and military manoeuvres. For everything that is shown, something is hidden.”

Aviation comes up frequently in the book, as its military and commercial importance is reflected in the outsize role aviation has played in the development of computing and communications infrastructure. Aviation provides compelling examples of the unintended, emergent consequences of this technology.

High anthropoclouds in the sky of Barcelona, 2010, accessed through Wikimedia Commons. The clouds created by aircraft have an outsize impact on climate change. And climate change, Bridle writes, contributes to the increasingly vexing problem of “clear air turbulence” which threatens aircraft but cannot be reliably predicted.

On the last day of October, just a few months after New Dark Age was published, I found myself at Gatwick International Airport near London. I wanted to walk to the nearby town of Crawley to pick up a cardboard packing box. Though the information clerks in the airport terminal told me there was no walking route to Crawley, I had already learned that there was in fact a multi-use cycling lane, and so I hunted around the delivery ramps and parking garage exits until I found my route.

It was a beautiful but noisy stroll, with a brook on one side, a high fence on the other, and the ear-splitting roar of jet engines rising over me every few minutes. Little did I know that in just over a month this strange setting would be a major crime scene, as the full force of the aeronautical/intelligence industry pulled out all stops to find the operators of unauthorized drones, while hundreds of thousands of passengers were stranded in the pre-Christmas rush.

Another month has passed and no perpetrators have been identified, leading some to wonder if the multiple drone sightings were all mistakes. But in any case, aviation experts have long agreed that it’s just a matter of time before “non-state actors” manage to use unmanned aerial vehicles to deadly effect. Wireless communications, robotics, and three-dimensional location systems are now so widely available and inexpensive, it is unrealistic to think that drones will always be controlled by or even tracked by military or police authorities.

The exponential advance of artificial stupidity

Bridle’s discussion of trends in artificial intelligence is at once one of the most intriguing and, to this layperson at least, one of the less satisfying sections of the book. Many of us have heard about a new programming approach, following which a computer program taught itself to play the game Go, and soon was able to beat the world’s best human players of this ancient and complex game.

Those of us who have had to deal with automated telephone-tree answering systems, as much as we may hate the experience, can recognize that voice-recognition and language processing systems have also gotten better. And Google Translate has improved by leaps and bounds in just a few years time.

Bridle’s discussion of the relevant programming approaches presupposes a basic familiarity with the concept of neural networks. Since he writes so clearly about so many other facets of computational thinking, I wish he had chosen to spell out the major approaches to artificial intelligence a bit more for those of us who do not have degrees in computer science.

When he discusses the facility of Youtube in promoting mindless videos, and the efficiency of social media in spreading conspiracy theories of every sort, his message is lucid and provocative.

Here the two-step dance between algorithms and human users of the web produces results that might be laughable if they weren’t chilling. Likewise, strange trends develop out of interplay between Google’s official “mission” – “to organize the world’s information” – and the business model by which it boosts its share price – selling ads.

The Children’s Youtube division of Google has been one of Bridle’s research interests, and those of us fortunate enough not to be acquainted with this realm of culture are likely to be shocked by what he finds.

You might ask what kind of idiot would name a video “Surprise Play Doh Eggs Peppa Pig Stamper Cars Pocoyo Minecraft Surfs Kinder Play Doh Sparkle Brilho”. A clever idiot, that’s who, an idiot who may or may not be human, but who knows how to make money. Bridle explains the motive:

This unintelligible assemblage of brand names, characters and keywords points to the real audience for the descriptions: not the viewer, but the algorithms that decide who sees which videos.”

These videos are created to be seen by children too young to be reading titles. Youtube accommodates them – and parents happy to have their toddlers transfixed by a screen – by automatically assembling long reels of videos for autoplay. The videos simply need to earn their place in the playlists with titles that contain enough algorithm-matching words or phrases, and hold the toddler’s attention long enough for ads to be seen and the next video to begin.

The content factories that churn out videos by the millions, then, must keep pace with current trends while spending less on production than will be earned by the accompanying ads, which are typically sold on a “per thousand views” basis.

Is this a bit of a stretch from “organizing the world’s information”? Yes, but what’s more important, a corporation’s lofty mission statement, or its commercial raison d’être? (That is, to sell ads.)

When it comes to content aimed at adults the trends are just as troubling, as Bridle’s discussion of conspiracy theories makes clear.

According to the Diagnostic and Statistical Manual of Mental Disorders, he explains, “a belief is not a delusion when it is held by a person’s ‘culture or subculture’.”

But with today’s social media, it is easy to find people who share any particular belief, no matter how outlandish or ridiculous that belief might seem to others:

Those that the psychiatric establishment would have classified as delusional can ‘cure’ themselves of their delusions by seeking out and joining an online community of like minds. Any opposition to this worldview can be dismissed as a cover-up of the truth of their experience ….”

This pattern, as it happens, reflects the profit-motive basis of social media corporations – people give a media website their attention for much longer when it spools videos or returns search results that confirm their biases and beliefs, and that means there are more ads viewed, more ad revenue earned.

If Google and other social media giants do a splendid job of “organizing the world’s information”, then, they are equally adept at organizing the world’s misinformation:

The abundance of information and the plurality of worldviews now accessible to us through the internet are not producing a coherent consensus reality, but one riven by fundamentalist insistence on simplistic narratives, conspiracy theories, and post-factual politics. It is on this contradiction that the idea of a new dark age turns: an age in which the value we have placed upon knowledge is destroyed by the abundance of that profitable commodity, and in which we look about ourselves in search of new ways to understand the world.”

Our unknowable future

After reading to the last page of a book in which the author covers a dazzling array of topics so well and weaves them together so skillfully, it would be churlish to wish he had included more. I would hope, however, that Bridle or someone with an equal gift for systemic analysis will delve into two questions that naturally arise from this work.

Bridle notes that the energy demands of our computational network are growing rapidly, to the point that this network is a significant driver of climate change. But what might happen to the network if our energy supply becomes effectively scarce due to rapidly rising energy costs?3

Major sectors of the so-called Web 2.0 are founded in a particular business model: services are provided to the mass of users “free”, while advertisers and other data-buyers pay for our attention in order to sell us more products. What might happen to this dominant model of “free services”, if an economic crash means we can’t sustain consumption on anything close to the current scale?

I suspect Bridle would say that the answers to these questions, like so many others, do not compute. Though computation can be a great tool, it will not answer many of the most important questions.

In the morass of information/misinformation in which our network engulfs us, we might find many reasons for pessimism. But Bridle urges us to accept and even welcome the deep uncertainty which has always been a condition of our existence.

As misleading as the “cloud” may be as a picture of our computer network, Bridle suggests we can find value if we take a nod from the 14th-century Christian mystic classic  “The Cloud of Unknowing.” Its anonymous author wrote, “On account of pride, knowledge may often deceive you …. Knowledge tends to breed conceit, but love builds.”

Or in Bridle’s 21st century phrasing,

It is this cloud that we have sought to conquer with computation, but that is continually undone by the reality of what we are attempting. Cloudy thinking, the embrace of unknowing, might allow us to revert from computational thinking, and it is what the network itself urges upon us.”


Photo at top: anthropogenic clouds over paper mill UPM-Kymmene, Schongau, 2013. Accessed at Wikimedia Commons.


NOTES

1 For an excellent account of the centuries-long development of contemporary meteorology, including the important role of Lewis Fry Richardson, see Bill Streever’s 2016 book And Soon I Heard a Roaring Wind: A Natural History of Moving Air.
2 More precisely, though intelligence agents can often zero in on suspicious conversations after a crime has been committed or an insurgency launched, the trillions of bits of data are unreliable sources of prediction before the fact.
3 Kris de Decker has posed some intriguing possibilities in Low-Tech Magazine. See, for example, his 2015 article “How to Build a Low-tech Internet”.

rivers of light

PHOTO POST

Just when winter temperatures drop the farthest, the sun shines its brightest and snow floats across open space like liquid light.

But the current cold snap, like many before it, was preceded by a squall. The geese settled on the marsh to wait out the wind.

West Wind (click images for larger views)

 

West Wind Two

When the storm was over there were lines on the surface of the marsh …

Aftermath

… and lines on the shore.

Aftermath Two

With the air temperature hovering around –20°C, waterfowl sought the warmth of liquid water …

3 + 1

though liquidity was fickle.

Sail to the Sun

In Port Darlington harbour the flow of water and ice became a stream of steam and light.

Winter Harbour 

Top photo: Rivers of Light (click here for larger version)

 

january’s window

PHOTO POST

When a cold dry wind blows in from the north, bright colours come out to play on the lakeshore.

 

Parasol (click images for larger view)

Even in the snowless meadows the early morning light finds seed heads aglow.

Meadowglow

Water flash-frozen in a ditch coats leaves and preserves a remnant of summer’s green.

Dark Matter

Not every day so far this month has been bright, but buffleheads can shine their own lights.

Slipstream

Beach pebbles wear carapaces of ice to catch the shine of sand, stone and morning.

Superconductor

Sometimes these special lenses shout “Look! The sky is blue!”

Blue Rush

Such a blessing, to wake up and gaze through january’s window.

Ripple

Top photo: Sunrise Moment (click here for larger view)

searchlight

PHOTO POST

Have we ever had an autumn and early winter with so little sunlight? Perhaps, but with so many gray days and so little snow, one has to look a little harder for a glimpse of colour and glow while exploring the waterfront this season.

When the sun pokes out along the beach for a few minutes at sunrise or sunset it’s a treat.

Anchor (click images for larger view)

 

Magnification

But just as often the only light seems to emerge from the nearly-frozen water along the edges of the marsh.

Filigree

 

Climbing Feather

When the sky is as wet as the mud and twigs underfoot, it falls to feathers to illuminate their scenes.

Spiny Feather

On this morning the beavers may be among those glad there’s just a dusting of snow – at least they don’t need to shovel their walks.

Beaver Trail

This route leads from the water’s edge to a favoured feeding site.

Dentition

Though the beavers can make short work of a clump of trees, the next summer brings forth twice as many new shoots.

Last year’s chew

Closer to home, another rodent is grateful for our hard work in the garden. In early fall we had a nice crop of beets, but a few weeks later when we went to dig up our harvest the beets had all disappeared. The mystery was solved when we saw this adorable little varmint dig up a treasure from the lawn and scamper up a tree to eat, in what has become a daily performance.

Eat your vegetables

Top photo: Afternoon Fog (click here for larger view)