Energy And Civilization: a review

Also published at Resilience.org and BiophysEco.

If you were to find yourself huddled with a small group of people in a post-crash, post-internet world, hoping to recreate some of the comforts of civilization, you’d do well to have saved a printed copy of Vaclav Smil’s Energy and Civilization: A History.

Smil’s new 550-page magnum opus would help you understand why for most applications a draft horse is a more efficient engine than an ox – but only if you utilize an effective harness, which is well illustrated. He could help you decide whether building a canal or a hard-topped road would be a more productive use of your energies. When you were ready to build capstans or block-and-tackle mechanisms for accomplishing heavy tasks, his discussion and his illustrations would be invaluable.

But hold those thoughts of apocalypse for a moment. Smil’s book is not written as a doomer’s handbook, but as a thorough guide to the role of energy conversions in human history to date. Based on his 1994 book Energy in World History, the new book is about 60% longer and includes 40% more illustrations.

Though the initial chapters on prehistory are understandably brief, Smil lays the groundwork with his discussion of the dependency of all living organisms on their ability to acquire enough energy in usable forms.

The earliest humanoids had some distinct advantages and liabilities in this regard. Unlike other primates, humans evolved to walk on two feet all the time, not just occasionally. Ungainly though this “sequence of arrested falls” may be, “human walking costs about 75% less energy than both quadrupedal and bipedal walking in chimpanzees.” (Energy and Civilization, pg 22)

What to do with all that saved energy? Just think:

The human brain claims 20–25% of resting metabolic energy, compared to 8–10% in other primates and just 3–5% in other mammals.” (Energy and Civilization, pg 23)

In his discussion of the earliest agricultures, a recurring theme is brought forward: energy availability is always a limiting factor, but other social factors also come into play throughout history. In one sense, Smil explains, the move from foraging to farming was a step backwards:

Net energy returns of early farming were often inferior to those of earlier or concurrent foraging activities. Compared to foraging, early farming usually required higher human energy inputs – but it could support higher population densities and provide a more reliable food supply.” (Energy and Civilization, pg 42)

The higher population densities allowed a significant number of people to work at tasks not immediately connected to securing daily energy requirements. The result, over many millennia, was the development of new materials, tools and processes.

Smil gives succinct explanations of why the smelting of brass and bronze was less energy-intensive than production of pure copper. Likewise he illustrates why the iron age, with its much higher energy requirements, resulted in widespread deforestation, and iron production was necessarily very limited until humans learned to exploit coal deposits in the most recent centuries.

Cooking snails in a pot over an open fire. In Energy and Civilization, Smil covers topics as diverse as the importance of learning to use fire to supply the energy-rich foods humans need; the gradual deployment of better sails which allowed mariners to sail closer to the wind; and the huge boost in information consumption that occurred a century ago due to a sudden drop in the energy cost of printing. This file comes from Wellcome Images, a website operated by Wellcome Trust, a global charitable foundation based in the United Kingdom, via Wikimedia Commons.

Energy explosion

The past two hundred years of fossil-fuel-powered civilization takes up the biggest chunk of the book. But the effective use of fossil fuels had to be preceded by many centuries of development in metallurgy, chemistry, understanding of electromagnetism, and a wide array of associated technologies.

While making clear how drastically human civilizations have changed in the last several generations, Smil also takes care to point out that even the most recent energy transitions didn’t take place all at once.

While the railways were taking over long-distance shipments and travel, the horse-drawn transport of goods and people dominated in all rapidly growing cities of Europe and North America.” (Energy and Civilization, pg 185)

Likewise the switches from wood to coal or from coal to oil happened only with long overlaps:

The two common impressions – that the twentieth century was dominated by oil, much as the nineteenth century was dominated by coal – are both wrong: wood was the most important fuel before 1900 and, taken as a whole, the twentieth century was still dominated by coal. My best calculations show coal about 15% ahead of crude oil …” (Energy and Civilization, pg 275)

Smil draws an important lesson for the future from his careful examination of the past:

Every transition to a new form of energy supply has to be powered by the intensive deployment of existing energies and prime movers: the transition from wood to coal had to be energized by human muscles, coal combustion powered the development of oil, and … today’s solar photovoltaic cells and wind turbines are embodiments of fossil energies required to smelt the requisite metals, synthesize the needed plastics, and process other materials requiring high energy inputs.” (Energy and Civilization, pg 230)

A missing chapter

Energy and Civilization is a very ambitious book, covering a wide spread of history and science with clarity. But a significant omission is any discussion of the role of slavery or colonialism in the rise of western Europe.

Smil does note the extensive exploitation of slave energy in ancient construction works, and slave energy in rowing the war ships of the democratic cities in ancient Greece. He carefully calculates the power output needed for these projects, whether supplied by slaves, peasants, or animals.

In his look at recent European economies, Smil also notes the extensive use of physical and child labour that occurred simultaneously with the growth of fossil-fueled industry. For example, he describes the brutal work conditions endured by women and girls who carried coal up long ladders from Scottish coal mines, in the period before effective machinery was developed for this purpose.

But what of the 20 million or more slaves taken from Africa to work in the European colonies of the “New World”? Did the collected energies of all these unwilling participants play no notable role in the progress of European economies?

Likewise, vast quantities of resources in the Americas, including oil-rich marine mammals and old-growth forests, were exploited by the colonies for the benefit of European nations which had run short of these important energy commodities. Did this sudden influx of energy wealth play a role in European supremacy over the past few centuries? Attention to such questions would have made Energy and Civilization a more complete look at our history.

An uncertain future

Smil closes the book with a well-composed rumination on our current predicaments and the energy constraints on our future.

While the timing of transition is uncertain, Smil leaves little doubt that a shift away from fossil fuels is necessary, inevitable, and very difficult. Necessary, because fossil fuel consumption is rapidly destabilizing our climate. Inevitable, because fossil fuel reserves are being depleted and will not regenerate in any relevant timeframe. Difficult, both because our industrial economies are based on a steady growth in consumption, and because much of the global population still doesn’t have access to a sufficient quantity of energy to provide even the basic necessities for a healthy life.

The change, then, should be led by those who are now consuming quantities of energy far beyond the level where this consumption furthers human development.

Average per capita energy consumption and the human development index in 2010. Smil, Energy and Civilization, pg 363

 

Smil notes that energy consumption rises in correlation with the Human Development Index up to a point. But increases in energy use beyond, roughly the level of present-day Turkey or Italy, provide no significant boost in Human Development. Some of the ways we consume a lot of energy, he argues, are pointless, wasteful and ineffective.

In affluent countries, he concludes,

Growing energy use cannot be equated with effective adaptations and we should be able to stop and even to reverse that trend …. Indeed, high energy use by itself does not guarantee anything except greater environmental burdens.

Opportunities for a grand transition to less energy-intensive society can be found primarily among the world’s preeminent abusers of energy and materials in Western Europe, North America, and Japan. Many of these savings could be surprisingly easy to realize.” (Energy and Civilization, pg 439)

Smil’s book would indeed be a helpful post-crash guide – but it would be much better if we heed the lessons, and save the valuable aspects of civilization, before apocalypse overtakes us.

 

Top photo: Common factory produced brass olive oil lamp from Italy, c. late 19th century, adapted from photo on Wikimedia Commons.