Fake news, failed states

Also published at Resilience.org.

Many of the violent conflicts raging today can only be understood if we look at the interplay between climate change, the shrinking of cheap energy supplies, and a dominant economic model that refuses to acknowledge physical limits.

That is the message of Failing States, Collapsing Systems: BioPhysical Triggers of Political Violence, a thought-provoking new book by Nafeez Mosaddeq Ahmed. Violent conflicts are likely to spread to all continents within the next 30 years, Ahmed says, unless a realistic understanding of economics takes hold at a grass-roots level and at a nation-state policy-making level.

The book is only 94 pages (plus an extensive and valuable bibliography), but the author packs in a coherent theoretical framework as well as lucid case studies of ten countries and regions.

As part of the Springer Briefs In Energy/Energy Analysis series edited by Charles Hall, it is no surprise that Failing States, Collapsing Systems builds on a solid grounding in biophysical economics. The first few chapters are fairly dense, as Ahmed explains his view of global political/economic structures as complex adaptive systems inescapably embedded in biophysical processes.

The adaptive functions of these systems, however, are failing due in part to what we might summarize with four-letter words: “fake news”.

inaccurate, misleading or partial knowledge bears a particularly central role in cognitive failures pertaining to the most powerful prevailing human political, economic and cultural structures, which is inhibiting the adaptive structural transformation urgently required to avert collapse.” (Failing States, Collapsing Systems: BioPhysical Triggers of Political Violence, by Nafeez Mosaddeq Ahmed, Springer, 2017, page 13)

We’ll return to the failures of our public information systems. But first let’s have a quick look at some of the case studies, in which the explanatory value of Ahmed’s complex systems model really comes through.

In discussing the rise of ISIS in the context war in Syria and Iraq, Western media tend to focus almost exclusively on political and religious divisions which are shoehorned into a “war on terror” framework. There is also an occasional mention of the early effects of climate change. While not discounting any of these factors, Ahmed says that it is also crucial to look at shrinking supplies of cheap energy.

Prior to the onset of war, the Syrian state was experiencing declining oil revenues, driven by the peak of its conventional oil production in 1996. Even before the war, the country’s rate of oil production had plummeted by nearly half, from a peak of just under 610,000 barrels per day (bpd) to approximately 385,000 bpd in 2010.” (Failing States, Collapsing Systems, page 48)

Similarly, Yemen’s oil production peaked in 2001, and had dropped more than 75% by 2014.

While these governments tried to cope with climate change effects including water and food shortages, their oil-export-dependent budgets were shrinking. The result was the slashing of basic social service spending when local populations were most in need.

That’s bad enough, but the responses of local and international governments, guided by “inaccurate, misleading or partial knowledge”, make a bad situation worse:

While the ‘war on terror’ geopolitical crisis-structure constitutes a conventional ‘security’ response to the militarized symptoms of HSD [Human Systems Destabilization] (comprising the increase in regional Islamist militancy), it is failing to slow or even meaningfully address deeper ESD [Environmental System Disruption] processes that have rendered traditional industrialized state power in these countries increasingly untenable. Instead, the three cases emphasized – Syria, Iraq, and Yemen – illustrate that the regional geopolitical instability induced via HSD has itself hindered efforts to respond to deeper ESD processes, generating instability and stagnation across water, energy and food production industries.” (Failing States, Collapsing Systems, page 59)

This pattern – militarized responses to crises that beget more crises – is not new:

A 2013 RAND Corp analysis examined the frequency of US military interventions from 1940 to 2010 and came to the startling conclusion: not only that the overall frequency of US interventions has increased, but that intervention itself increased the probability of an ensuing cluster of interventions.” (Failing States, Collapsing Systems, page 43)

Ahmed’s discussions of Syria, Iraq, Yemen, Nigeria and Egypt are bolstered by the benefits of hindsight. His examination of Saudi Arabia looks a little way into the future, and what he foresees is sobering.

He discusses studies that show Saudi Arabia’s oil production is likely to peak in as soon as ten years. Yet the date of the peak is only one key factor, because the country’s steadily increasing internal demand for energy means there is steadily less oil left for export.

For Saudi Arabia the economic crunch may be severe and rapid: “with net oil revenues declining to zero – potentially within just 15 years – Saudi Arabia’s capacity to finance continued food imports will be in question.” For a population that relies on subsidized imports for 80% of its food, empty government coffers would mean a life-and-death crisis.

But a Saudi Arabia which uses up all its oil internally would have major implications for other countries as well, in particular China and India.

like India, China faces the problem that as we near 2030, net exports from the Middle East will track toward zero at an accelerating rate. Precisely at the point when India and China’s economic growth is projected to require significantly higher imports of oil from the Middle East, due to their own rising domestic energy consumption requirement, these critical energy sources will become increasingly unavailable on global markets.” (Failing States, Collapsing Systems, page 74)

Petroleum production in Europe has also peaked, while in North America, conventional oil production peaked decades ago, and the recent fossil fuel boomlet has come from expensive, hard-to-extract shale gas, shale oil, and tar sands bitumen. For both Europe and North America, Ahmed forecasts, the time is fast approaching when affordable high-energy fuels are no longer available from Russia or the Middle East. Without successful adaptive responses, the result will be a cascade of collapsing systems:

Well before 2050, this study suggests, systemic state-failure will have given way to the irreversible demise of neoliberal finance capitalism as we know it.” (Failing States, Collapsing Systems, page 88)

Are such outcomes inescapable? By no means, Ahmed says, but adequate adaptive responses to our developing predicaments are unlikely without a recognition that our economies remain inescapably embedded in biophysical processes. Unfortunately, there are powerful forces working to prevent the type of understanding which could guide us to solutions:

vested interests in the global fossil fuel and agribusiness system are actively attempting to control information flows to continue to deny full understanding in order to perpetuate their own power and privilege.” (Failing States, Collapsing Systems, page 92)

In the next installment, Fake News as Official Policy, we’ll look at the deep roots of this misinformation and ask what it will take to stem the tide.

Top photo: Flying over the Trans-Arabian Pipeline, 1950. From Wikimedia.org.

St Marys Cement environmental assessment: does climate policy matter?

A proposal to excavate hundreds of millions of tonnes of limestone from beneath Lake Ontario raises many questions, starting with a big one: should we be planning for the continued expansion of the concrete industry, given what we already know about climate change?

St Marys Cement, a Canadian branch of Brazilian multinational Votorantim Cimentos, operates a limestone quarry and cement factory on the shore of Lake Ontario at Bowmanville, Ontario. The company wants to expand by tunnelling under Lake Ontario from the existing quarry, and removing up to 4 million tonnes of limestone a year for the next 100 years. (The Project Description for the expansion is here.)

Graphic from St Marys project description at http://bowmanvilleexpansion.ca/wp-content/uploads/2016/Bowmanville_Expansion_Project_Description.pdf

Graphic from St Marys Project Description

(A note on terminology: in this article I use “cement” to refer to the white powder that is mixed with gravel and water, and “concrete” to refer to the construction material that results when the gravel-cement mixture reacts with water and solidifies.)

While concrete is one of the most important and ubiquitous materials in modern life, the cement industry is a major source of greenhouse gas emissions, accounting for 8% of global carbon emissions (Macleans, 7 March 2016). The emissions occur because when limestone is cooked to transform it into cement its natural carbon content is released, and because it takes prodigious amounts of heat to effect this chemical transformation. That is why the St Marys plant in Bowmanville burns both coal and bitcoke (the black powder left over from bitumen after refining) by the shipload.

Not only is cement production carbon-emissions intensive, but the way we use cement tends to encourage further carbon emissions. The biggest share of cement in Ontario goes into concrete pavement which is used to widen roads and add new parking lots – which in turn promotes greater use of cars and trucks.

Which brings us back to the St Marys expansion plan. The company is not saying it will expand its cement production in Bowmanville, but the additional limestone will most likely be used with cement. For further clarity, the limestone extracted from under Lake Ontario will be marketed in industry parlance as “aggregate” – what most people refer to as gravel. And that aggregate will mostly be mixed with cement, to form concrete, or used as a base layer underneath slabs of concrete. In other words, the quarrying of limestone for aggregate will complement St Marys core business of quarrying limestone for cement.

Is a major new source of aggregate needed in the Toronto area? St Marys says in their Project Description:

Over the past 20 years, Ontario has consumed over 3 billion tonnes of aggregate and limestone or about 164 million tonnes per year on average. Given expected levels of economic and population growth, Ontario’s consumption of aggregates and limestone for cement is projected to average about 186 million tonnes per year over the next 20 years.” (Project Description, page 8) [emphasis mine]

The key phrase here is “given expected levels of economic and population growth”. If the economic trends of the past 20 years continue on the same track for the next 20 years, aggregate use will go up by 13 per cent – from 164 million tonnes per year to 186 million. In other words, if we continue Business As Usual, we will need more aggregate.

How is this aggregate used?

Aggregate and limestone are used for a wide range of applications in Ontario; however, the primary use is in construction work, either directly on construction sites, or in the manufacturing of concrete and other building products. Roads (provincial highways, as well as municipal and private roads) account for the largest share of aggregate used in construction work.” (Project Description, page 8) [emphasis mine]

In recent decades the area of pavement has grown faster than the population has grown, because urban sprawl has been the dominant form of development. If we project that “Business As Usual” scenario into the next generation, we’ll need to build a lot more roadway, we’ll need a lot more aggregate, and we’ll need a lot more cement.

But the “Business As Usual” scenario collides head-on with Canada’s official climate policy commitments. Although no one thinks we can or should stop using cement (or fossil fuels) tomorrow, it is clear that we should be making every effort to reduce our carbon emissions immediately, and reduce those emissions at a faster rate with each passing year. That means we should be planning to reduce, not increase, the role of car-dependent sprawl in our urban developments; reduce, not increase, the amount of new pavement we place atop our land each year; and reduce, not increase, the amount of cement we need to cook up and mix with aggregate for concrete each year.

The Business As Usual scenario means we don’t take seriously the climate science consensus that continued growth in carbon emissions will be catastrophic for our grandchildren, and we don’t take seriously our government’s commitment to an economy-wide reduction of emissions.

St Marys Cement notice of Public Information Centre, Monday December 5, 2016

St Marys Cement notice of Public Information Centre, Monday December 5, 2016

Yet there is no evidence in the St Marys Project Description that anything other than a Business As Usual scenario is being considered. Regarding the carbon emissions of the project, the most substantive comment is that the quarry will have “reduced GHG [Green House Gas] emission intensity compared to other quarries that are located further from market.” The report does note, however, that “potential effects on climate change as a result of the Project will be characterized through the EA [Environmental Assessment] process.”

When this Environmental Assessment process gets underway, will St Marys be required to show that the expansion project is consistent with Ontario’s and Canada’s official climate policies? Stay tuned.



Top photo: The Peter Cresswell docked at the St Marys Cement port on Lake Ontario near Bowmanville.

Oil well in southeast Saskatchewan, with flared gas.

Energy at any cost?

Also published at Resilience.org.

If all else is uncertain, how can growing demand for energy be guaranteed? A review of Vaclav Smil’s Natural Gas.

Near the end of his 2015 book Natural Gas: Fuel for the 21st Century, Vaclav Smil makes two statements which are curious in juxtaposition.

On page 211, he writes:

I will adhere to my steadfast refusal to engage in any long-term forecasting, but I will restate some basic contours of coming development before I review a long array of uncertainties ….”

Link to Vaclav Smil series list.And in the next paragraph:

Given the scale of existing energy demand and the inevitability of its further growth, it is quite impossible that during the twenty-first century, natural gas could come to occupy such a dominant position in the global primary energy supply as wood did in the preindustrial era or as coal did until the middle of the twentieth century.”

If you think that second statement sounds like a long-term forecast, that makes two of us. But apparently to Smil it is not a forecast to say that the growth of energy demand is inevitable, and it’s not a forecast to state with certainty that natural gas cannot become the dominant energy source during the twenty-first century – these are simply “basic contours of coming development.” Let’s investigate.

An oddly indiscriminate name

Natural Gas is a general survey of the sources and uses of what Smil calls the fuel with “an oddly indiscriminate name”. It begins much as it ends: with a strongly-stated forecast (or “basic contour”, if you prefer) about the scale of natural gas and other fossil fuel usage relative to other energy sources.

why dwell on the resources of a fossil fuel and why extol its advantages at a time when renewable fuels and decentralized electricity generation converting solar radiation and wind are poised to take over the global energy supply. That may be a fashionable narrative – but it is wrong, and there will be no rapid takeover by the new renewables. We are a fossil-fueled civilization, and we will continue to be one for decades to come as the pace of grand energy transition to new forms of energy is inherently slow.” – Vaclav Smil, preface to Natural Gas

And in the next paragraph:

Share of new renewables in the global commercial primary energy supply will keep on increasing, but a more consequential energy transition of the coming decades will be from coal and crude oil to natural gas.”

In support of his view that a transition away from fossil fuel reliance will take at least several decades, Smil looks at major energy source transitions over the past two hundred years. These transitions have indeed been multi-decadal or multi-generational processes.

Obvious absence of any acceleration in successive transitions is significant: moving from coal to oil has been no faster than moving from traditional biofuels to coal – and substituting coal and oil by natural gas has been measurably slower than the two preceding shifts.” – Natural Gas, page 154

It would seem obvious that global trade and communications were far less developed 150 years ago, and that would be one major reason why the transition from traditional biofuels to coal proceeded slowly on a global scale. Smil cites another reason why successive transitions have been so slow:

Scale of the requisite transitions is the main reason why natural gas shares of the TPES [Total Primary Energy System] have been slower to rise: replicating a relative rise needs much more energy in a growing system. … going from 5 to 25% of natural gas required nearly eight times more energy than accomplishing the identical coal-to-oil shift.” – Natural Gas, page 155

Open-pit coal mine in south-east Saskatchewan.

Open-pit coal mine in south-east Saskatchewan. June 2014.

Today only – you’ll love our low, low prices!

There is another obvious reason why transitions from coal to oil, and from oil to natural gas, could have been expected to move slowly throughout the last 100 years: there have been abundant supplies of easily accessible, and therefore cheap, coal and oil. When a new energy source was brought online, the result was a further increase in total energy consumption, instead of any rapid shift in the relative share of different sources.

The role of price in influencing demand is easy to ignore when the price is low. But that’s not a condition we can count on for the coming decades.

Returning to Smil’s “basic contour” that total energy demand will inevitably rise, that would imply that energy prices will inevitably remain relatively low – because there is effective demand for a product only to the extent that people can afford to buy it.

Remarkably, however, even as he states confidently that demand must grow, Smil notes the major uncertainty about the investment needed simply to maintain existing levels of supply:

if the first decade of the twenty-first century was a trendsetter, then all fossil energy sources will cost substantially more, both to develop new capacities and to maintain production of established projects at least at today’s levels. … The IEA estimates that between 2014 and 2035, the total investment in energy supply will have to reach just over $40 trillion if the world is to meet the expected demand, with some 60% destined to maintain existing output and 40% to supply the rising requirements. The likelihood of meeting this need will be determined by many other interrelated factors.” – Natural Gas, page 212

What is happening here? Both Smil and the IEA are cognizant of the uncertain effects of rising prices on supply, while graphing demand steadily upward as if price has no effect. This is not how economies function in the real world, of course.

Likewise, we cannot assume that because total energy demand kept rising throughout the twentieth century, it must continue to rise through the twenty-first century. On the contrary, if energy supplies are difficult to access and therefore much more costly, then we should also expect demand to grow much more slowly, to stop growing, or to fall.

Falling demand, in turn, would have a major impact on the possibility of a rapid change in the relative share of demand met by different sources. In very simple terms, if we increased total supply of renewable energy rapidly (as we are doing now), but the total energy demand were dropping rapidly, then the relative share of renewables in the energy market could increase even more rapidly.

Smil’s failure to consider such a scenario (indeed, his peremptory dismissal of the possibility of such a scenario) is one of the major weaknesses of his approach. Acceptance of business-as-usual as a reliable baseline may strike some people as conservative. But there is nothing cautious about ignoring one of the fundamental factors of economics, and nothing safe in assuming that the historically rare condition of abundant cheap energy must somehow continue indefinitely.

In closing, just a few words about the implications of Smil’s work as it relates to the threat of climate change. In Natural Gas, he provides much valuable background on the relative amounts of carbon emissions produced by all of our major energy sources. He explains why natural gas is the best of the fossil fuels in terms of energy output relative to carbon emissions (while noting that leaks of natural gas – methane – could in fact outweigh the savings in carbon emissions). He explains that the carbon intensity of our economies has dropped as we have gradually moved from coal to oil to natural gas.

But he also makes it clear that this relative decarbonisation has been far too slow to stave off the threat of climate change.

If he turns out to be right that total energy demand will keep rising, that there will only be a slow transition from other fossil fuels to natural gas, and that the transition away from all fossil fuels will be slower still, then the chances of avoiding catastrophic climate change will be slim indeed.

Top photo: Oil well in southeast Saskatchewan, with flared gas. June 2014.

Does your city have a future?

In the past, as in the future, local ecosystem resources were the key to the economies of cities. A review of America’s Most Sustainable Cities & Regions.

Also published at Resilience.org.

America’s Most Sustainable Cities and Regions, by John W. Day and Charles Hall, published by Springer, 2016

America’s Most Sustainable Cities and Regions, by John W. Day and Charles Hall, published by Springer, 2016

Readers hoping to find their home town rated in America’s Most Sustainable Cities and Regions may be both disappointed and enlightened.

Disappointed, because the book doesn’t provide a systematic listing that covers all American cities – either the most sustainable or the least sustainable. Enlightened, because the authors do provide a systematic way of looking at sustainability, which can be applied to cities across the USA and around the world.

The authors are counted among the pioneers of ecological economics, and their new book is a lucid introduction to the fundamental concepts of this viewpoint.

While a textbook of ecological economics might lose some readers in abstraction, this book moves fluidly between abstract concepts, and easy-to-follow application of these principles to the past development, and possible futures, of twelve cities and ten regions.

In the process, Day and Hall show that cities which grew up before the heyday of the fossil fuel age were sited to benefit from strong ecosystem services:

until the beginning of the twentieth century, cities like New York, Albany, Chicago, and New Orleans grew up in resource-rich areas and along waterways that provided food and fiber and convenient trade routes. Second, the climate of all of these early cities was moist …. (America’s Most Sustainable Cities and Regions, page 16)

The combination of adequate rainfall, benign climate and fertile soils leads to high potential for agriculture, as shown in a map of Net Primary Productivity:

The growth rate of plants (expressed as NPP or net primary productivity in grams per meter square per year) across the central part of North America. The tan areas have very low productivity, and dark green areas are highly productive. From America’s Most Sustainable Cities and Regions, Springer, 2016, page 132

The growth rate of plants (expressed as NPP or net primary productivity in grams per meter square per year) across the central part of North America. The tan areas have very low productivity, and dark green areas are highly productive. From America’s Most Sustainable Cities and Regions, Springer, 2016, page 132

By contrast, some major cities in the arid west enjoyed minimal ecosystem resources to begin with, and they had scarcely outgrown village status before requiring vast resource inputs that could only realistically be supplied by fossil fuels.

Las Vegas, for example, was located at a small oasis fed by artesian wells amidst vast deserts. And the Los Angeles River initially supplied enough water for a small town, but as groundwater was withdrawn the River ceased to flow year round, and dried up in the 1920s. Thus both Las Vegas and Los Angeles had to wait for the high-energy economy of the fossil fuel age, which built dams and pumped water from hundreds of miles away, before they could grow into large cities.

Not surprisingly, Las Vegas and Los Angeles, along with other sunbelt cities in arid regions, get dismal ratings for sustainability in a future when cheap fossil fuels run short, and climate change exacerbates droughts.

At the other end of the spectrum, Cedar Rapids, Iowa, is located in a still-fertile plain with adequate rainfall for farming. Freight transportation is close at hand via the Mississippi River system, and relatively clear skies and dependable breezes can provide solar and wind generation of electricity (though the authors make clear that these energy sources are unlikely to provide anything like the quantities of energy we now routinely use). Perhaps most critically, Cedar Rapids is a small city, whose population can conceivably be supported by nearby resources in a low-energy future.

New Orleans was founded in an area with some of the continent’s richest ecosystem resources. But residents may not have the option to rely on these resources in future:

The ecosystem that has supported the unique, vibrant culture of the city is rapidly eroding into the sea as the impacts of sea level rise, levees, and oil industry canals exacerbate the natural land loss rates of the subsiding deltaic wetland environment that surrounds the city. (America’s Most Sustainable Cities and Regions, page 64)

Unless there is a major and effective restoration program, New Orleans’ future prospects are not good. Undoing the damage wrought by fossil-fueled projects will be difficult in a lower-energy economy – and doubly difficult as climate change brings stronger hurricanes, higher sea levels and storm surges, and more extreme fluctuations in the flow of the Mississippi.

Other cities are in very hard times currently, but the regional ecosystem services are still relatively strong, leading to more hopeful future prospects:

There are active plans in both Flint and Detroit to develop urban agriculture on vacant land. “Urban farms” from a few acres to several hundred acres have sprung up in both cities with vegetables, fruit trees, chickens and eggs. … Thus, in the face of pervasive urban decay and collapse, these cities may be able to produce a significant amount of food. (America’s Most Sustainable Cities and Regions, page 49)

While the book is a strong addition to the literature on sustainability, I do have a few quibbles. First, a reader expecting discussion of the sustainability of average citizens’ lifestyles in various cities will be disappointed. It gradually becomes clear that current per capita ecological footprints are not the subject of this book, nor are Hall and Day ranking the degree to which the economies of various American cities are sustainable in their current configurations. Rather, they elucidate the degree to which these cities will be sustainable as they cope with 21st century megatrends. A clear statement early in the book, explaining what the authors mean and what they don’t mean by “America’s most sustainable cities”, would have been helpful.

Finally, the book’s predictive usefulness is weakened by a lack of any mention of either large-scale migrations or political factors on future sustainability.

The authors note that the resources in the area around Cedar Rapids could likely support the current population (though not their current lifestyles). On the other hand, the population of the megalopolis from Washington DC to Boston, including New York City, is far too great to be supported by local resources. In theory, then, the current Cedar Rapids could become sustainable, while the current New York City cannot.

Eventually that which cannot be sustained, will not be sustained. However, suppose a severe resource crunch hits rapidly. Assuming the millions of people in New York City don’t just ascend in The Rapture, many will move to someplace that can provide the necessities of life. A large outflow of people from cities like New York, and an inflow into the smaller, theoretically sustainable cities like Cedar Rapids, would quickly alter the sustainability calculus.

Likewise, if sustainability is threatened for large numbers of people on a short time-line, political leaders could force through desperately short-sighted measures to feed populations. Thus regions which currently have relatively strong ecosystems may not be able to maintain those environments, as more populous and more powerful regions exert their demands.

In summary, John W. Day and Charles Hall have provided a great overview of the factors that can make a city and a region sustainable, even in the face of restricted energy shortages and the challenges of climate change. If we move quickly enough in adopting an “economics as if reality matters”, then this book may also serve as a road map to a reasonably prosperous future.