Higher Ground

With Lake Ontario at record high levels, coastal marshes have now spilled over large areas which are normally more or less dry land.

Edges (click images for larger view)

To take pictures along the walking trail along Bowmanville Creek at the north side of Bowmanville Marsh, you need to add hip waders to your photography kit – mere knee-high boots will only get you around the edges of this wetland.

Mirror

Suspension

Though the bare ground has been well under the waters for weeks now, many of the moist woodland species appear to be thriving.

 

In the Catbird Seat

Layers

Mollusc II

The meadow at the east end of West Beach Road, just 100 meters from the Lake Ontario shoreline, also teems with activity.

With masses of rotting wood from generations of huge willow trees along the edge of this meadow, there are billions of ants – now all flushed out of the ground to find a dry perch. Anything sticking out of the water – a blade of grass, stem of last year’s goldenrod, or the odd passing photographer – soon acquires a population of ants. Myrmecophobes be forewarned.

Colonies

But there are bigger animals making the grass rustle – schools of carp now swim and splash through this meadow.

Velocity

Patterns

If you are a bottom feeder this is fine dining.

Mouth

Top photo: Return (click here for larger image)

Marsh monoculture – invasive phragmites and the threat to wetlands

We’ve all seen those amazingly tall reeds with the feathery seed heads that glow in the autumn sunset and last right through the winter, and which have appeared in dense stands on roadsides wherever there’s a bit of water.

Those beautiful reeds are phragmites, and they’re deadly to nearly every other plant, bird, amphibian and predator in our wetlands.

That was the message in a sobering talk by Janice M. Gilbert on April 19. Since there are two big marshes in my neighbourhood, and phragmites are scattered widely in this area, I was keenly interested.

The species of phragmites (pronounced frag-mite-eez) that is causing so much concern is the European common reed. Though it is closely related to a native variety of phragmites, the European version has no natural controls in North America and quickly multiplies into a dense monoculture.

Dr. Gilbert has been researching phragmites and working in phragmites control efforts for the past 10 years. She spoke at the Purple Woods Conservation Area this week, in an event sponsored by Scugog Environmental Advisory Council in partnership with Central Lake Ontario Conservation, Kawartha Conservation, North Durham Nature, Scugog Lake Stewards and Nature Conservancy of Canada.

Gilbert explained that the European common reed is awesomely prolific because nearly every part of the plant will sprout and grow if dropped in wet soil.

It produces a large seed head, and the seeds can be carried for kilometers by the wind – but that’s just one of its strategies for dispersal. Its rhizomes shoot out for many feet in every direction. And if a live stalk is knocked down, it will send up new shoots all along its length.

Dispersal methods of phragmites. (From Invasive Phragmites – Best Management Practices in Ontario)

This explains why phragmites have spread so widely along highways and rural roads. Heavy equipment used in road construction and maintenance, particularly tracked machinery, carries mud from one site to another. If pieces of phragmites are carried in that mud, and it doesn’t completely dry before being dropped in a new location, a new outbreak of the reed will soon be growing.

Spread of phragmites in the Great Lakes area. (From Invasive Phragmites – Best Management Practices in Ontario)

Habitat destruction

Phragmites take over a location so rapidly because they suck up nutrients and water faster than nearly all competitor plants, and because they are allelopathic – their roots secrete chemicals which are toxic to other plants.

Native insect species have not evolved to feed on phragmites – and that means insect-eating birds don’t find food in a phragmites monoculture. Muskrats don’t like phragmites, so they don’t build their characteristic mounds, surrounded by a bit of open water, within phragmites-dominated marshes. Birds will nest right around the edges of phragmites stands, but not very far within – the stands are too dense. And since a fully-developed phragmites monoculture can have 200 stalks per square meter, the growth is so dense that turtles trying to fight their way through are sometimes trapped, succumbing to starvation.

In short, the entire food chain from bottom to top is disrupted when phragmites take over a wetland.

A tale of two marshes

This ecological horror story is of more than passing local concern. There are two important coastal wetlands in my neighbourhood. In one of them – Westside Marsh – there are already major stands of phragmites all along the west side.

Phragmites are established all along the west edge of Westside Marsh, next to the St. Marys Cement quarry. Photo from Nov 2015.

The other local marsh, Bowmanville Marsh, appears to be phrag-free so far – but there are stands of phragmites barely 100 meters away.

This stand of phragmites is along West Beach Road, just north of Bowmanville Marsh.

 

A stand of phragmites on the south side of Hwy 401, near the Liberty Street exit, extends to within a few meters of Soper Creek. This creek flows south and joins Bowmanville Marsh.

 

A long and difficult battle

The good news is that phragmites infestations can be controlled. The bad news is that the process is labour-intensive, it sometimes requires specialized equipment, efforts need to be repeated at least two or three years in a row, and it is almost impossible to get large stands of phragmites knocked back without application of concentrated glyphosate.

Dr. Gilbert described her own gradual conversion to advocating the use of glyphosate – as a wetland ecologist, her first reaction was to recoil at the thought of using herbicides around wetlands – and her frustration that the glyphosate formulations used to great success in phragmites-control programs in the US are not usually available or permitted in Canada.

In our local area, Diana Shermet of Central Lake Ontario Conservation Authority (CLOCA) confirmed that to date, there have been no phragmites-control programs in Westside Marsh or Bowmanville Marsh. High cost is a major barrier, though CLOCA has received funding and carried out phragmites-control programs in a few areas in Durham region.

As Gilbert noted, successful phragmites-control efforts are usually co-ordinated between several agencies. It does little good to get phragmites out of a marsh if there are stands a few meters away along roadsides. And it does little good to get phragmites out of a ditch along a municipal road, if there are stands along a regional or provincial highway nearby.

The Ontario Phragmites Working Group is providing information and expertise to agencies across the province, and we certainly hope that the provincial government, Durham Region, Municipality of Clarington and CLOCA will find a way to take up this effort in the near future.

Top photo: a stand of phragmites in Westside Marsh, photographed in April 2017. (Click here for larger version)

Westside story

In Westside Marsh (just west of Port Darlington, on the north shore of Lake Ontario) the colour scheme is still mostly brown and blue. But the signs and sounds of spring are everywhere, with birds picking out nesting locations and a few already settled down on nests.

An osprey chows down on fresh fish. Unfortunately this bird appears to have a thorn or twig lodged in a nostril – it was clearly visible, sticking out at the same angle, on three different evenings in the past week. (Click image for larger view)

 

A real fixer-upper. The view from this platform is great but the furnishings so far are sparse. (Click image for larger view)

 

These nests are last year’s models but they’ve certainly held together through many strong winds. At left, this nest is only a few feet above ground in a dogwood bush, but its location on a narrow island makes it inaccessible to most predators. At right, this oriole (or possibly red-eyed vireo) nest hangs high in a tree on a hill overlooking Westside Marsh. (Click image for larger view)

Mute swans, which stay in the area through the winter, are already on their nests. (Click images for larger view)

 

These plovers splashing in the shallows at sunset may be just passing through. (Click image for larger view)

 

Beavers are a common sight here, especially in evening when they cross the open water to the wooded edges of the marsh.

Top photo: ospreys perched below one of several nesting platforms in the marsh. (Click here for larger view)

spectrum of motion

The swift coming of a cold front in recent days brought vibrant colour and motion to the lake shore.

 

‘Horizon’ – Bowmanville West Beach, Lake Ontario, March 10, 2017, 4:44 pm

 

‘Flight’ – Bowmanville West Beach, March 10, 2017, 4:46 pm

 

‘Rivulet’ – Bowmanville West Beach, March 11, 2017, 6:01 pm

 

‘Pier’ – St. Marys Cement docks, Lake Ontario, March 11, 2017, 6:18 pm

 

‘Speed of Light’ – Lake Ontario, Bowmanville, March 8, 2017, 5:31 pm

 

‘Slow Growth’ – Bowmanville Marsh, Lake Ontario, March 12, 2017, 9:36 am

 

‘Depth’ – Bowmanville Marsh, Sunday March 12, 9:45 am

Click photos above for larger versions.

Top photo: ‘Purple splash’ – Port Darlington Lighthouse, Lake Ontario, March 8, 2017, 5:20 pm (click here for larger version)

Sideways Glances

With sunlight in short supply in southern Ontario for the past month and spring greenery still at least six weeks away, it’s been a challenge to capture much colour in outdoor photos. But that makes every brief break in the clouds all the more precious.

These panoramas were composed in the old-school, 1990s way (pieced together in Photoshop from several shots) rather than the new-fashioned way (waving a smart-phone camera at the landscape and choosing the “create panorama” function).

 

Waterway, Saturday afternoon, February 4 (click here for large version)

 

Breakwater/Snowshower, Monday morning, February 6 (click here for large version)

 

Seating is limited, Monday afternoon, February 6 (click here for large version)

 

Top photo: Winter’s Dawn on Bowmanville Marsh, Saturday morning, February 4 (click here for large version)

Energy From Waste, or Waste From Energy? A look at our local incinerator

Also published at Resilience.org.

Is it an economic proposition to drive up and down streets gathering up bags of plastic fuel for an electricity generator?

Biking along the Lake Ontario shoreline one autumn afternoon, I passed the new and just-barely operational Durham-York Energy Centre and a question popped into mind. If this incinerator produces a lot of electricity, where are all the wires?

The question was prompted in part by the facility’s location right next to the Darlington Nuclear Generating Station. Forests of towers and great streams of high-voltage power lines spread out in three directions from the nuclear station, but there is no obvious visible evidence of major electrical output from the incinerator.

So just how much electricity does the Durham-York Energy Centre produce? Does it produce as much energy as it consumes? In other words, is it accurate to refer to the incinerator as an “energy from waste” facility, or is it a “waste from energy” plant? The first question is easy to answer, the second takes a lot of calculation, and the third is a matter of interpretation.

Before we get into those questions, here’s a bit of background.

The Durham-York Energy Centre is located about an hour’s drive east of Toronto on the shore of Lake Ontario, and was built at a cost of about $300 million. It is designed to take 140,000 tonnes per year of non-recyclable and non-compostable household garbage, burn it, and use the heat to power an electric generator. The garbage comes from the jurisdictions of adjacent regions, Durham and York (which, like so many towns and counties in Ontario, share names with places in England).

The generator powered by the incinerator is rated at 14 megawatts net, while the generators at Darlington Nuclear Station, taken together, are rated at 3500 megawatts net. The incinerator produces 1/250th the electricity that the nuclear plant produces. That explains why there is no dramatically visible connection between the incinerator and the provincial electrical grid.

In other terms, the facility produces surplus power equivalent to the needs of 10,000 homes. Given that Durham and York regions have fast-growing populations – more than 1.6 million at the 2011 census – the power output of this facility is not regionally significant.

A small cluster of transformers is part of the Durham-York Energy Centre.

Energy Return on Energy Invested

But does the facility produce more energy than it uses? That’s not so easy to determine. A full analysis of Energy Return On Energy Invested (EROEI) would require data from many different sources. I decided to approach the question by looking at just one facet of the issue:

Is the energy output of the generator greater than the energy consumed by the trucks which haul the garbage to the site?

Let’s begin with a look at the “fuel” for the incinerator. Initial testing of the facility showed better than expected energy output due to the “high quality of the garbage”, according to Cliff Curtis, commissioner of works for Durham Region (quoted in the Toronto Star). Because most of the paper, cardboard, glass bottles, metal cans, recyclable plastic containers, and organic material is picked up separately and sent to recycling or composting plants, the remaining garbage is primarily plastic film or foam. (Much of this, too, is technically recyclable, but in current market conditions that recycling would be carried out at a financial loss.)

Inflammatory material

If you were lucky to grow up in a time and a place where building fires was a common childhood pastime, you know that plastic bags and styrofoam burn readily and create a lot of heat. A moment’s consideration of basic chemistry backs up that observation.

Our common plastics are themselves a highly processed form of petroleum. One of the major characteristics of our industrial civilization is that we have learned how to suck finite resources of oil from the deepest recesses of the earth, process it in highly sophisticated ways, mold it into endlessly versatile – but still cheap! – types of packaging, use the packaging once, and then throw the solidified petroleum into the garbage.

If instead of burying the plastic garbage in a landfill, we burn it, we capture some of the energy content of that original petroleum. There’s a key problem, though. As opposed to a petroleum or gas well, which provides huge quantities of energy in one location, our plastic “fuel” is light-weight and dispersed through every city, town, village and rural area.

The question thus becomes: is it an economic proposition to drive up and down every street gathering up bags of plastic fuel for an electricity generator?

The light, dispersed nature of the cargo has a direct impact on garbage truck design, and therefore on the number of loads it takes to haul a given number of tonnes of garbage.

Because these trucks must navigate narrow residential streets they must have short wheelbases. And because they need to compact the garbage as they go, they have to carry additional heavy machinery to do the compaction. The result is a low payload:

Long-haul trucks and their contents can weigh 80,000 pounds. However, the shorter wheelbase of garbage and recycling trucks results in a much lower legal weight  — usually around 51,000 pounds. Since these trucks weigh about 33,000 pounds empty, they have a legal payload of about nine tons. (Source: How Green Was My Garbage Truck)

By my calculations, residential garbage trucks picking up mostly light packaging will be “full” with a load weighing about 6.8 tonnes. (The appendix to this article lists sources and shows the calculations.)

At 6.8 tonnes per load, it will require over 20,000 garbage truck loads to gather the 140,000 tonnes burned each year by the Durham-York Energy Centre.

How many kilometers will those trucks travel? Working from a detailed study of garbage pickup energy consumption in Hamilton, Ontario, I estimated that in a medium-density area, an average garbage truck route will be about 45 km. Truck fuel economy during the route is very poor, since there is constant stopping and starting plus frequent idling while workers grab and empty the garbage cans.

There is additional traveling from the base depot to the start of each route, from the end of the route to the drop-off point, and back to the depot.

I used the following map to make a conservative estimate of total kilometers.

Google map of York and Durham Region boundaries, with location of incinerator.

Because most of the garbage delivered to the incinerator comes from Durham Region, and the population of both Durham Region and York Region are heavily weighted to their southern and western portions, I picked a spot in Whitby as an “average” starting point. From that circled “X” to the other “X” (the incinerator location) is 30 kilometers. Using that central location as the starting and ending point for trips, I estimated 105 km total for each load. (45 km on the pickup route, 30 km to the incinerator, and 30 km back to the starting point).

Due to their weight and to their frequent stops, garbage trucks get poor fuel economy. I calculated an average .96 liters/kilometer.

The result: our fleet of trucks would haul 20,600 loads per year, travel 2,163,000 kilometers, and burn just over 2 million liters of diesel fuel.

Comparing diesel to electricity

How does the energy content of the diesel fuel compare to the energy output of the incinerator’s generator? Here the calculations are simpler though the numbers get large.

There are 3412 BTUs in a kilowatt-hour of electricity, and about 36,670 BTUs in a liter of diesel fuel.

If the generator produces enough electricity for 10,000 homes, and these homes use the Ontario average of 10,000 kilowatt-hours per year, then the generator’s output is 100,000,000 kWh per year.

Converted to BTUs, the 100,000,000 kWh equal about 341 billion BTUs.

The diesel fuel burned by the garbage trucks, on the other hand, has a total energy content of about 76 billion BTUs.

That answers our initial question: does the incinerator produce more energy than the garbage trucks consume in fuel? Yes it does, by a factor of about 4.5.

If we had tallied all the energy consumed by this operation, then we could say it had an Energy Return On Energy Invested ratio of about 4.5 – comparable to the bottom end of economically viable fossil fuel extraction operations such as Canadian tar sands mining. But of course we have considered just one energy input, the fuel burned by the trucks.

If we added in the energy required to build and maintain the fleet of garbage trucks, plus an appropriate share of the energy required to maintain our roads (which are greatly impacted by weighty trucks), plus the energy used to build the $300 million incinerator/generator complex, the EROEI would be much lower, perhaps below 1. In other words, there is little or no energy return in the business of driving around picking up household garbage to fuel a generator.

Energy from waste, or waste from energy

Finally, our third question: is this facility best referred to as “Energy From Waste” or “Waste From Energy”?

Looking at the big picture, “Waste From Energy” is the best descriptor. We take highly valuable and finite energy sources in the form of petroleum, consume a lot of that energy to create plastic packaging, ship that packaging to every household via a network of stores, and then use a lot more energy to re-collect the plastic so that we can burn it. The small amount of usable energy we get at the last stage is inconsequential.

From a municipal waste management perspective, however, things might look quite different. In our society people believe they have a god-given right to acquire a steady-stream of plastic-packaged goods, and a god-given right to have someone else come and pick up their resulting garbage.

Thus municipal governments are expected to pay for a fleet of garbage trucks, and find some way to dispose of all the garbage. If they can burn that garbage and recapture a modest amount of energy in the form of electricity, isn’t that a better proposition than hauling it to expensive landfill sites which inevitably run short of capacity?

Looked at from within that limited perspective, “Energy From Waste” is a fair description of the process. (Whether incineration is a good idea still depends, of course, on the safety of the emissions from modern garbage incinerators – another controversial issue.)

But if we want to seriously reduce our waste, the place to focus is not the last link in the chain – waste disposal. The big problem is our dependence on a steady stream of products produced from valuable fossil fuels, which cannot practically be re-used or even recycled, but only down-cycled once or twice before they end up as garbage.

Top photo: Durham-York Energy Centre viewed from south east. 

APPENDIX – Sources and Calculations

Capacity and Fuel Economy of Garbage Trucks

There are many factors which determine the capacity and fuel economy of garbage trucks, including: type of truck (front-loading, rear-loading, trucks with hoists for large containers vs. trucks which are loaded by hand by workers picking up individual bags); type of route (high density urban areas with large businesses or apartment complex vs. low-density rural areas); and type of garbage (mixed waste including heavy glass, metal and wet organics vs. light but bulky plastics and foam).

Although I sent an email inquiry to Durham Waste Department asking about capacity and route lengths of garbage trucks, I didn’t receive a response. So I looked for published studies which could provide figures that seemed applicable to Durham Region.

A major source was the paper “Fuel consumption estimation for kerbside municipal solid waste (MSW) collection activities”, in Waste Management & Research, 2010, accessed via www.sagepub.com.

This study found that “Within the ‘At route’ stage, on average, the normal garbage truck had to travel approximately 71.9 km in the low-density areas while the route length in high-density areas is approximately 25 km.” Since Durham Region is a mix of older dense urban areas, newer medium-density urban sprawl, and large rural areas, I estimated an average “medium-density area route” of 45 km.

The same study found an average fuel economy of .335 liters/kilometer for garbage trucks when they were traveling from depot to the beginning of a route. The authors found that fuel economy in the “At Route” portion (with frequent stops, starts, and idling) was 1.6 L/km for high-density areas, and 2.0 L/km in low-density areas; I split the difference and used 1.8 L/km as the “At Route” fuel consumption.

As to the volumes of trucks and the weight of the garbage, I based on estimates on figures in “The Workhorses of Waste”, published by MSW Management Magazine and WIH Resource Group. This article states: “Rear-end loader capacities range from 11 cubic yards to 31 cubic yards, with 25 cubic yards being typical.”

Since rear-end loader trucks are the ones I usually see in residential neighborhoods, I used 25 cubic yards as the average volume capacity.

The same article discusses the varying weight factors:

The municipal solid waste deposited at a landfill has a density of 550 to over 650 pounds per cubic yard (approximately 20 to 25 pounds per cubic foot). This is the result of compaction within the truck during collection operations as the truck’s hydraulic blades compress waste that has a typical density of 10 to 15 pounds per cubic foot at the curbside. The in-vehicle compaction effort should approximately double the density and half the volume of the collected waste. However, these values are rough averages only and can vary considerably given the irregular and heterogeneous nature of municipal solid waste.

In Durham Region the heavier paper, glass, metal and wet organics are picked up separately and hauled to recycling depots, so it seems reasonable to assume that the remaining garbage hauled to the incinerator would not be at the dense end of the “550 to over 650 pounds per cubic yard” range. I used what seems like a conservative estimate of 600 pounds per cubic yard.

(I am aware that in some cases garbage may be off-loaded at transfer stations, further compacted, and then loaded onto much larger trucks for the next stage of transportation. This would impact the fuel economy per tonne in transportation, but would involve additional fuel in loading and unloading. I would not expect that the overall fuel use would be dramatically different. In any case, I decided to keep the calculations (relatively) simple and so I assumed that one type of truck would pick up all the garbage and deliver it to the final drop-off.)

OK, now the calculations:

Number of truckloads

25 cubic yard load X 600 pounds / cubic yard = 15000 pounds per load

15000 pounds ÷ 2204 lbs per tonne = 6.805 tonnes per load

140,000 tonnes burned by incinerator ÷ 6.805 tonnes per load = 20,570 garbage truck loads

Fuel burned:

45 km per “At Route” portion X 20,570 loads = 925,650 km “At Route”

1.8 L/km fuel consumption “At Route” x 925,650 km = 1,666,170 liters

60 km per load traveling to and from incinerator

60 km x 20,570 loads = 1,234,200 km traveling

.335 L/km travelling fuel consumption X 1,234,200 km = 413,457 liters

1,666,170 liters + 413,457 liters = 2,027,627 liters total fuel used by garbage trucks

As a check on the reasonableness of this estimate, I calculated the average fuel economy from the above figures:

20,570 loads x 105 km per load = 2,159,850 km per year

2,079,625 liters fuel ÷ 2,159,850 km = .9629 L/km

This compares closely with a figure published by the Washington Post, which said municipal garbage trucks get just 2-3 mpg. The middle of that range, 2.5 miles per US gallon, equals 1.06 L/km.

Electricity output of the generator power by the incinerator

With a rated output of 14 megawatts, the generator could produce about 122 megawatt-hours of electricity per year – if it ran at 100% capacity, every hour of the year. (14,000 kW X 24 hours per day X 365 days = 122,640,000 kWh.) That’s clearly unrealistic.

However, the generator’s operators say it puts out enough electricity for 10,000 homes. The Ontario government says the average residential electricity consumption is 10,000 kWh.

10,000 homes X 10,000 kWh per year = 100,000,000 kWh per year.

This figure represents about 80% of the maximum rated capacity of the incinerator’s generator, which sounds like a reasonable output, so that’s the figure I used.

Etchings at a winter sunrise

Six photos, taken on Bowmanville Marsh and the Lake Ontario shoreline. Saturday morning, January 7.

 

Goose Ghost (click for full-size image)

 

Zebra mussel (click for full-size image)

 

Zebra mussel (click for full-size image)

 

Surface Composition (click for full-size image)

 

Luminated feather (click for full-size image)

 

Top photo: Feather, at dawn (click here for full-size image)

St Marys Underground Expansion: Will a mine be a good neighbour to a marsh?

Where do you draw the line between “moderate” and “significant” environmental effects?

Are the dust and diesel emissions from a large mining operation likely to affect the health of an adjacent wetland?

In the case of the St Marys Underground Expansion proposal, those questions would appear to be closely linked.

Under Ontario rules for screening of proposed projects, a Category C project, judged at the outset to have “Moderate Potential Environmental Effects”, faces a less stringent consultation and approval process than a Category D project, which is judged at the outset to have “Significant Potential Environmental Effects”. (See A Class Environmental Assessment for Activities of the Ministry of Northern Development and Mines under the Mining Act.)

The St Marys Underground Expansion has been slotted as Category C. The determination that the project will have only “moderate potential environmental effects” appears to be based substantially on the claim that nearly all of the activities will take place underground, and the surface footprint of the current operation will not change.

But the Project Description doesn’t give serious consideration to the cumulative effects of limestone dust and diesel emissions produced by a doubling of the scale of the extraction activities.

The St Marys operation in Bowmanville is adjacent to a conservation area which includes two marshes – the Westside Marsh and Bowmanville Marsh. Both are designated as provincially significant wetlands, and both are downwind from St Marys when the prevailing westerly and southwesterly winds are blowing.

Graphic adapted from Bowmanville Expansion Project Description, page 12. The lines at bottom marked “Declines” represent the tunnels in and out of the proposed mine.

The current quarrying operation takes out about 4 million tonnes of limestone annually, and the underground mine is projected to take out an additional 4 million tonnes.

The initial plans call for mining and primary crushing to take place underground. All the air that is pumped into the mine will be pumped back out via the exhaust tunnel. There is the potential for dust produced underground to come out with the exhaust flow; the Project Description gives little detail on how dust will be managed.

There will be additional processing of the mined limestone above ground, so there is the potential for more limestone dust being swept up in the wind.

Last but certainly not least, several hundred trucks per day will be required to haul the limestone off to market – at 20 tonnes per truck, the 4 million tonnes per year would fill 200,000 trucks.

How can we be sure that the dust and diesel particulate emissions from all this crushing and trucking will have no “significant environmental effects” on the adjacent marshes? The Project Description neither asks nor answers this question.

In a table discussing Potential Project Effects, the document repeats the same basic phrases in regards to “Areas of ecological importance, including protected areas”, “Views or aesthetics”, “Aquatic species or habitat”, “Terrestrial species or habitat”, “Endangered species”, “Migratory bird species”, “Surface water quality”, and “Soils – contaminants, sedimentation, erosion”. Regarding all these concerns, the Project Description says there will be no significant effects “since all activities will occur beneath the bed of Lake Ontario or within the existing licensed quarry area”.

It is important that in the next phase of the project screening, the possible effects of emissions get more attention in order to ensure that years of marsh rehabilitation work do not go for naught.

Central Lake Ontario Conservation Authority (CLOCA) has this vision for the Westside and Bowmanville Marshes in 2026: “The Marshes are Clean, Green, Blue, Peaceful …. All living things enjoy the protected, tranquil area of the Bowmanville/Westside Marshes Conservation Area. The wooded, old field and wetland areas of the Bowmanville/Westside Marshes provide attractive habitat for abundant wildlife, and a diversity of trees and plants. … Neighbors are implementing effective plans to minimize disruption and noise ….” (Bowmanville/Westside Marshes Conservation Area Management Plan)

But CLOCA reports also make clear that a lot of improvement is needed. A 2006 report indicated that the wetland areas of Westside and Bowmanville Marsh both ranged from “poor to good health”. A 2014 Public Information Centre on Bowmanville Marsh Restoration reported “submerged aquatic vegetation and amphibians in poor condition”, and “birds in fair condition, but showing signs of decline”.

Frogs are thought to be especially sensitive to environmental contaminants, and frogs are remarkably scarce in these marshes now. How much more air-borne pollution will settle in the marshes due to a doubling of heavy equipment emissions at the adjacent quarry/mine? Will frogs, other amphibians, and the many other inhabitants of the marshes be affected?

If the Bowmanville Underground Expansion goes ahead, will “All living things enjoy the protected, tranquil area of the Bowmanville/Westside Marshes”?

Snapping turtle at edge of Bowmanville Marsh, June 21, 2015.

Top photo: St Marys Cement quarry and kiln, February 14, 2016.

fluid as the light

These five photos were taken at sunset on December 19 and sunrise on December 20 at Port Darlington on the north shore of Lake Ontario.

December 19, 4:25 pm (click image for larger view)

 

December 19, 4:30 pm (click image for larger view)

 

December 20, 8:09 am (click image for larger view)

 

December 20, 8:19 am (click image for larger view)

Top photo: December 19, 4:30 pm. (click here for larger view)

St Marys Underground Expansion: A whole lotta truckin goin on

Can the current Waverly Road/Highway 401 interchange handle a doubling of truck traffic to and from the St Marys Cement quarry?

Given that the Waterfront Trail shares the road in this section with the St Marys traffic plus the Highway 401 on/off traffic, can the Waterfront Trail be promoted as a safe and healthy recreational feature?

What mitigation measures will St Marys Cement propose to compensate for a large increase in heavy truck traffic which will affect commuters as well as recreational cyclists?

These are key questions raised by the Project Description for the Bowmanville Expansion Project.

A previous post (Special Delivery: Moving 4,000,000 Tonnes) provided rough estimates for the number of shiploads or truckloads of limestone aggregate the project would move each year.

The Project Description says that the aggregate will be moved “using existing road, rail and/or dock infrastructure”. But at the project’s Public Information Centre in Bowmanville on December 5, St Marys representative David Hanratty made clear that for the foreseeable future, the aggregate would go out by truck, not by ship or rail, primarily to customers on the east side of the Greater Toronto Area.

It is simply not cost-effective to load the aggregate onto ship, then load it again onto trucks enroute to construction projects, Hanratty said. Rail freight is now too expensive for a low-cost product like limestone aggregate, he added, in addition to the problem of needing to reload the material onto trucks for the “last mile” in any case.

So the 4,000,000 tonnes of limestone will all go out by truck. At 20 tonnes per truck, that would mean 200,000 truckloads per year, or 770 truckloads per day if the aggregate is hauled five days/week.

(Put another way, truck traffic in and out of St Marys is likely to more than double. While the current quarry extracts a similar amount of limestone as the underground expansion is projected to add, much of the current output is in the form of cement clinkers shipped out on the Capt. Henry Jackman. With a capacity of 30,000 tonnes, this ship can carry the equivalent of 1500 20-tonne truckloads each time it leaves port. But the aggregate shipments from the new underground mine will all go by truck.)

The timing of shipments to market will also affect traffic volume. If buyers are not prepared to stockpile aggregate through the winter, the hauling might be concentrated in the summer construction season – meaning the impact on the Waverly Road/Highway 401 interchange, and on the Waterfront Trail, could be especially heavy during summer.

The current Highway 401 on- and off-ramps in this location are far from ideal. On the south side, traffic coming off the eastbound 401 has to get past two stop signs before making it onto Waverly Road. The left turn onto Waverly Road will be more difficult when several hundred more trucks per day are heading north on Waverly.

Traffic getting off the eastbound 401 faces two stop signs before turning onto Waverly Road (red Xs), causing frequent back-ups along the off-ramp. Assuming most of the loads of aggregate from St Marys will go to the eastern GTA, the loaded trucks will travel north along Waverly Road (red arrow) to the 401 westbound ramp, making it more difficult for Bowmanville-bound traffic to turn onto Waverly Road from Energy Drive. The volume of traffic on the eastbound off-ramp will also be increased, due to empty aggregate trucks returning from GTA markets via the eastbound 401. (Image from Google Maps, December 13, 2016)

Perhaps this interchange can be re-engineered to handle the new traffic load. Is St Marys prepared to fund this reconstruction as part of its impact mitigation efforts?

As for the Waterfront Trail, the addition of several hundred more trucks per day to the section of shared Trail/roadway will make the Trail less attractive and less safe. Two changes might be made to mitigate this impact.

First, perhaps the Trail could be rerouted here to eliminate the sharing of congested roadway on Waverly Road and Energy Drive. Ironically, Google Maps currently shows an incorrect routing for the Waterfront Trail as shown below; could this route become reality in the future?

Although the Waterfront Trail is currently routed on Waverly Road and then along Energy Drive (as shown by the red arrows), Google Maps incorrectly shows a routing along the north edge of the St Marys property (the solid blue line). Could this route become reality in the future? (Image from maps.google.ca, December 13, 2016) click for larger view

Second, there is no safe and attractive route between the Waterfront Trail and most of the populated areas of Bowmanville. Cyclists from the north side of the 401 have two choices, both poor, for routes across the 401 to the Waterfront Trail (see Getting across the 401). One of these routes is Waverly Road, which will be more dangerous for cyclists if there is a major increase in truck traffic without an appropriate “complete streets” redesign.

Perhaps St Marys can mitigate the expansion project’s negative impact on the Waterfront Trail by funding a separate walking/cycling overpass or underpass at the 401. Such a routing would be a significant improvement to Bowmanville’s recreational trails, which currently offer no safe connection to the Waterfront Trail.

Top photo: Bumper-to-bumper traffic on off-ramp to Waverly Road from eastbound 401, December 13, 2016